
Towards automatic detection of vulnerabilities in

software-intensive systems

Delphine Beaulaton1, Jean Quilbeuf1, Salah Sadou1, and Régis Fleurquin1

Univ. Bretagne-Sud, UMR 6074, IRISA, F-56000 Vannes, France
name.surname@univ-ubs.fr

Abstract

We propose an approach for detecting security vulnerabilities in software-intensive systems. Our

approach builds a model describing the system, vulnerabilities are then discovered by analyzing that

model. We rely on the CWE database for identifying key concepts in order to build a metamodel for

representing systems. We illustrate our approach on an example.

1 Introduction

Programmers and designers traditionally focus on the performance and functional correctness
of the software that they are producing. Performance and correctness are not sufficient in
an industrial context, where the software should also foster maintainability, re-usability or
interoperability. The field of Software Engineering provides tools, methods and good practices
for building software with these required properties. However, security is another property of
interest for software. Security has received a growing attention over the last decades and is now
a major concern for industries, but is still not systematically taken into account in the design
of new systems.

The security of a system is its ability to maintain the confidentiality, integrity and availability
of its assets against potential attacks [3]. In the frame of software-intensive systems, the assets
are pieces of information. Confidentiality states that only authorized users of the system may
access a given information. For instance, only the holder of a bank account can access its
balance. Integrity states that only authorized users can modify a particular piece of information,
i.e. only the holder of an account can order transfers from that account. Availability means
that the information should be available at all times to authorized users. A security policy
specifies the confidentiality, integrity and availability properties expected for each asset of a
system.

Some systems are specifically designed to be secure such as banking applications or military
communication systems. In that context, “secure” means “reasonably secure for their intended
use” [5]. A classical approach for building complex systems is to interconnect simpler systems.
Such an approach is not guaranteed to build a secure system, even if the simpler systems are
secure themselves. Indeed the interconnection of several systems may introduce new vulner-
abilities. A vulnerability can be seen as an unintended data or execution path in the system
that allows an attacker to access, modify or make unavailable some assets. The Common Vul-
nerabilities and Exposures1 is a database that lists known vulnerabilities. Note that a system
with vulnerabilities is possibly functionally correct, but unable to enforce its security policy.

Detecting vulnerabilities is challenging, in particular when they arise from the composition
of several systems. Several methods exist for detecting specific vulnerabilities [4], however all
possible vulnerabilities are not covered. Therefore our goal is to provide a methodology allowing

1https://cve.mitre.org

https://cve.mitre.org

Towards automatic detection of vulnerabilities in software-intensive systems Beaulaton et.al.

the detection of weaknesses, indicating to the designer which parts of the system are probably
vulnerable. Thanks to this more abstract level (weakness vs. vulnerablity), we hope to discover
more vulnerabilies than existing approaches.

In order to tackle this problem, we propose to build a model of the system that helps de-
tecting its possible weaknesses. Such a model should state the policy security of the system
as well as its assets. Furthermore the model should include a description of the system, either
generated from existing code, or other documents, that enables to state vulnerabilities as struc-
tural properties of that model. In order to build this model, we rely on CWE2, a database that
classifies weaknesses. The idea is to be able to model systems such that each weakness class
from CWE is transformed into a property on the model.

This paper is organized as follows: Section 2 presents our general approach for detecting
vulnerability in systems. We detail in Section 3 the current version of our meta-model for
describing systems to be analyzed. We present our constraint based analysis in Section 4 and
an example in Section 5. Finally, we conclude in Section 6.

2 General Approach

Figure 1: Representation of the
process

Most of system representations target functional aspects.
Here, we focus on security, which is a non functional aspect.
So we need a representation that allows us to highlight the
vulnerabilities. The difference between a weakness and a
vulnerability is that a weakness can lead to one or several
vulnerabilities. Indeed a vulnerability is directly usable by
a hacker to attack a system whereas a weakness represents
one or several potentially dangerous situations (future vul-
nerabilities). Then, it seems more efficient to detect weak-
nesses within the system in order to be able to avoid a larger
amount of risks.

Our proposed approach relies on the transformation of
a functional representation of system into a one that allows
vulnerability identification. The complete process is sketched in Figure 1. From the Security
Policy and the code of a software-intensive system we build its corresponding weakness-oriented
model. The analyze of the model will give us a list of potential weaknesses. From this list and
in accordance with the code we identify the potential vulnerabilities of the system. The final
step will be to go through the code of the system and correct the vulnerabilities in order to
have functional more secure code.

The model of the system that we build is weakness-oriented, which means that the choice
of elements we are using to describe the system is influenced by the hypothetical existence of
weaknesses. Actually, the model represents a given state of the system. So if there are no
potential risks, it will be directly reflected on the model.

We build our metamodel according to a bottom-up approach. The first step consists in
iteratively selecting weaknesses from the CWE database. From each weakness we identify
some general principles that define it, in order to have an overall vision of its effects on the
system. Then, if necessary, we modify the metamodel to integrate the newly identified principles
reflecting the current weakness. This iterative process allows us to define the vulnerability-
oriented metamodel described in the next Section.

2https://cwe.mitre.org

2

https://cwe.mitre.org

Towards automatic detection of vulnerabilities in software-intensive systems Beaulaton et.al.

3 A Vulnerability Oriented Model Representation

In order to detect vunerabilities, we need to represent on one hand the security policy and on
the other hand the information an attacker can actually access and maybe even modify. Our
metamodel (see Figure 2) encodes these two types of information.

Figure 2: metamodel representing the state of a system

First, we model the actors and roles of the system. The Actor metaclass stands for a
person who interacts with the system. They can be an internal user of the system such as an
administrator. They can also be an external attacker with no particular access rights. The way
they are supposed to interact with the system is defined by the role(s) they own.

The Role metaclass defines some control spheres. For example an actor that owns an
administrator role will have a higher access level and will need different information access
than a basic user. Access levels are embodied by the security policy of the system.

The security policy is an important part to describe. It describes who can access each
information and the modalities of this access. Comparing the security policy and the actual
behavior of the actors is the key to detect confidentiality or integrity violations. In the meta-
model, the security policy is modeled through an association between the metaclasses Role and
an Information. The type of access rights (read and/or write) are defined in the metaclass
InformationAccessRight. The absence of link between a Role and an Information means that
actors with that Role are not allowed to read nor write that information.

The Information metaclass represents the data that belongs to the system. Each Information
is contained in one or several information instances (metaclass InformationInstance) and every
one of them exists in an encoded version.

Each information instance is accessible through an information media (metaclass Informa-
tionMedia) that can be a storage resource or a stream, that allows them to be transmitted.
The actual access of the actors to the information is represented by the link between a role and
an information media through an instance of the InfoMediaAccessRight metaclass.

3

Towards automatic detection of vulnerabilities in software-intensive systems Beaulaton et.al.

context Role :
l e t po l i cy−read−al lowed : Set (In format ion) =

s e l f . i n f o rmat i onac c e s s r i gh t−>s e l e c t (read) . in fo rmat ion
l e t system−read−al lowed : Set (In format ion) =

s e l f . i n f omed i aac c e s s r i gh t−>s e l e c t (read) . i n f o rmat i on in s t ance . in fo rmat ion
inv c o n f i d e n t i a l i t y :

po l i cy−read−al lowed−>i n c l ud e sA l l (system−read−al lowed)

Figure 3: OCL invariant characterizing confidentiality

4 Detection of Weaknesses through Constraints

The metamodel developed in the previous section integrates the security policy of our system
and the information that a user can actually access and modify according to the system code.
We can check that both are consistent. An inconsistency between the security policy and the
actual access granted by the system indicates that the system contains a potential weakness.

As expressed earlier, the goal of our metamodel is to be able to express weaknesses as OCL
constraints. Figure 3 shows an invariant that characterizes confidentiality. First, we define
the set of information that a Role is allowed to access (policy-read-allowed), then the set of
Information that a Role can actually access through the system (system-read-allowed). The
invariant is broken if system-read-allowed is not included in policy-read-allowed, that is the
Role can access an information that it is not allowed to access.

5 Examples of Weakness-Oriented Models

We consider a web application and two of its actors: Jim, a developer of the system, and John,
an external user. The security policy states that actors with the role developer, such as Jim,
can access debug information, in order to correct the existing bugs. Conversely, actors with
the role “external user”, such as John, are not allowed to access debug information, because
that information could give a malicious user indications about the architecture of the system
for further interaction.

Consider a scenario where an exception occurs, and an error page presenting debug infor-
mation is shown to the actor. The system allows the actor to access the debug information. We
model this scenario by a InfoMediaAccessRight instance linking the role of the actor and the
web page, which is a storage resource also linked to the debug information. From that scenario,
we extract two situations.

The Figure 4 models a first situation, where the actor is Jim. Since the security policy of
the application allows Jim to access the debug information, there is an instance of Informa-
tionAccessRight that links Jim’s role and the debug information. Consequently, the invariant
from Figure 3 is respected.

The Figure 5 models a second situation, where the actor is John. The security policy forbids
external users to access debug information. This is reflected in the model by the absence of
connection between his role and the Information debugInfo. Here the invariant from Figure 3
is not respected, which allows us to detect a potential breach of confidentiality. This situation
is indeed listed in CWE as the weakness “CWE-600: Uncaught Exception in Servlet”. John
could cause a crash of the system by, for instance, entering an unexpected value. As the crash
is not handled safely, John can read the exception information, including sensitive structural
information about the system and use it for a later attack.

4

Towards automatic detection of vulnerabilities in software-intensive systems Beaulaton et.al.

jim:Actor

developer:Role

grantRead:
InfoMediaAccessRight

webPage:
StorageResource

authAccess:
InformationAccessRight

debug:Information

debugPage:
InformationInstance

Figure 4: The instance diagram representing
a normal situation of the system

john:Actor

ext. user:Role

grantRead:
InfoMediaAccessRight

webPage:
StorageResource

debug:Information

debugPage:
InformationInstance

Figure 5: The instance diagram representing
an abnormal situation of the system

6 Related Works and Conclusion

Detecting vulnerabilities using a metamodel has been used before. For example Almorsy et. al.
in [1] use formal vulnerabilities definitions in OCL and a system description class diagram. The
goal is to find vulnerabilities going though the code and finding pattern that matches the formal
signature. Then in their second publication on this topic [2] they step up into abstraction by
focusing on the architecture to detect attack signatures.

Our approach for detecting weaknesses is to include in a single model a representation of the
system and a representation of the security requirements. Currently our metamodel represents
a state of the system and we are able to express its secure situations by using OCL invariants, as
illustrated by our example. The non-compliance with this invariant implies possible weaknesses.
In the above approaches, the focus is on detecting a particular vulnerability, based on user-
defined signature. We can also write OCL constraints targeting specific vulnerabilities. In this
case, a system validating one of these constraints contains the corresponding vulnerability.

As future work, we plan to model the structure of the system, in order to represent how
information flows through it. Furthermore, we plan to incorporate further analyzes, to provide
more details about a breach of the invariant. For instance, we could precise which role is able to
breach the security policy. Then, we could analyze the path that leaks a confidential information
into a location readable by unauthorized roles. The final goal is to indicate to the designer which
part of the code is vulnerable, allowing them to mitigate the detected vulnerability. Ideally,
such a model would be built incrementally, by relying on external tools to discover hidden
channels.

References

[1] Mohamed Almorsy, John Grundy, and Amani S. Ibrahim. Supporting automated vulnerability
analysis using formalized vulnerability signatures. In IEEE/ACM ASE’12, pages 100–109, 2012.

[2] Mohamed Almorsy, John Grundy, and Amani S. Ibrahim. Automated software architecture security
risk analysis using formalized signatures. In ICSE ’13, pages 662–671, 2013.

[3] M. Bishop. What is computer security? IEEE Security Privacy, 1(1):67–69, Jan 2003.

[4] Peng Li and Baojiang Cui. A comparative study on software vulnerability static analysis techniques
and tools. In Information Theory and Information Security (ICITIS), 2010 IEEE International
Conference on, pages 521–524, Dec 2010.

[5] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.

5

	Introduction
	General Approach
	A Vulnerability Oriented Model Representation
	Detection of Weaknesses through Constraints
	Examples of Weakness-Oriented Models
	Related Works and Conclusion

