How to provide proof that software is bug-free?
Verified compilation to the rescue

Sandrine Blazy

N\ Université
7\ de Rennes (.) IRIS A

GDR GPL, Rennes, 2023-06-07

Deductive verification

SOFTWARE

CORRECT

in thejsense of

PROOIj
—

ith

conducted]

MATHEMATICAL
RIGOUR

SPECIFICATION

=

Sriday, 2Lth June, .

-

Checking a large routine. by Dr, A, Turing.

How can one check a routine in the sense of making sure that it is right?

In order that the man wiwo checks may not have too difficult a task the

| | |
FrOrr] early Intu ItIOnS . programaer should mske a number of definite assertions which cun be checked
individually, and from which the correctness of the whole programae casily

follows,

Conaider tho analogy of checking an addition. If it ias given as:

A. M. Turing.

Checking a large routine.1949.

—STOP

TESTr —nr——

1374
5906
6719
L337
7768

26104

ono_muat check the whole at cne aitting, because of the carrices,

u<+1
forr=0ton—1do
v =ut+v—s=s5+1 veu
for s=1 to r do
u<— u-+yv

r'=r414H

[EST s —r

... to deductive-verification and automated tools

Floyd 1967, Hoare 1969

SOFTWARE

written}in in thejsense of inclubing

LANGUAGE) PROOF/L
. ; — ~enferces

LOGIC
T | Bucted with
defined , by orgaCes 7\
PROOF SOFTWARE .
SEMANTICS) CERTIEI ATQ o 2 INVARIANTS
eifher or implemented In
MATHEMATICAL

RIGOUR) FUNCTIONAL

INTERPRETEFQ < AUTOMAT@ INTERACTIVE LANGUAGE
~— — — - 4

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

A

A

A|C|C|B|B|C|C

C

B

C

C

1

majority = A
cpt_delta =3

T ——

MJRTY—A Fast Majority
Vote Algorithm'

Robert S. Boyer and J Strother Moore

Computer Sciences Department
University of Texas at Austin
and
Computational Logic, Inc.

1717 West Sixth Street, Suite 290
Austin, Texas

Abstract

A new algorithm is presented for determining which, if any, of an arbitrary
number of candidates has received a majority of the votes cast in an election.
The number of comparisons required is at most twice the number of votes.
Furthermore, the algorithm uses storage in a way that permits an efficient
use of magnetic tape. A Fortran version of the algorithm is exhibited. The
Fortran code has been proved correct by a mechanical verification system for
Fortran. The system and the proof are discussed.

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

AlAlAlc|c|B|B|c|Cc|c|B|C|C]

1

majority = A
cpt_delta =3

T ——

A XK|X|ele]B|B|c|c|c|BC|C]

i

majority = A

cpt_delta = 1

T —

T ——

MJRTY—A Fast Majority
Vote Algorithm’

Robert S. Boyer and J Strother Moore

Computer Sciences Department
University of Texas at Austin
and
Computational Logic, Inc.
1717 West Sixth Street, Suite 290
Austin, Texas

Abstract

A new algorithm is presented for determining which, if any, of an arbitrary
number of candidates has received a majority of the votes cast in an election.
The number of comparisons required is at most twice the number of votes.
Furthermore, the algorithm uses storage in a way that permits an efficient
use of magnetic tape. A Fortran version of the algorithm is exhibited. The
Fortran code has been proved correct by a mechanical verification system for
Fortran. The system and the proof are discussed.

Part 1. summary

SOFTWARE) CORRECT) SPECIFICATION
-

"

writtenjin VERIFIED \ N thei sense of

COMPILER)
C LANGUAGE PROOF !
: < T enferces

defined by conducted with
COQ PROOF
SEMANTICS) ASSISTANT INVARIANTS
s {
e:

INTERPRETEF\j
<&

SOFTWARE CORRECT SPECIFICATION

writteniin in the sense of including

Part 2 CLANGUAGQ PROOL\
pasics of T N

defined ‘by conducted with
verified compilation \ \ N
SEMANTICS) (?A%%II;'FIEAC\)I\CI)TF) INVARIANTS

INTERPRETED

Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end
specification:

The generated code must behave as prescribed
by the semantics of the source program.

EE——

This specification becomes mathematically precise as soon as we have formal
semantics for the source language and the machine language.

An old Idea ...

John McCarthy
James Painter’

CORRECTNESS OF A COMPILER
FOR ARITHMETIC EXPRESSIONS’

1. Introduction. This paper contains a proof of the correctness of a simple
compiling algorithm for compiling arithmetic expressions into machine
language.

The definition of correctness, the formalism used to express the descrip-
tion of source language, object language and compiler, and the methods
of proof are all intended to serve as prototypes for the more complicated
task of proving the correctness of usable compilers. The ultimate goal,
as outlined in references [1], {2], (3] and [4] is to make it possible to use
a computer to check proofs that compilers are correct.

Mathematical Aspects of Computer Science, 1967

3

Proving Compiler Correctness
In a Mechanized Logic

R. Milﬁer and R. Weyhrauch

Computer Science Department
Stanford University

Abstract :

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ArLGoL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented enly in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

Machine Intelligence (7), 1972

10

Now taught to Masters students

(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.)

type exp = Nb of int | Id of string | Plus of exp * exp

EEEEEE— semantics compiler

type state = string - int (eval, exec) (compile)

let rec eval (e:state)(a:exp): int =

match a with
Nb n - n
Id X » e X let rec compile (a:exp): instr list = match a with
Plus (al,a2) - (eval e al)+(eval Nb n - [Push n]

e —

Id x - [Read x]
m Plus (al,a2) - (compile al)@ (compile a2)@ [IPlus]

OCaml I —

type instr = Push of int | Read of string | IPlus

let rec exec (e:state)(stack: int list)(pgm: instr list): int list
match (pgm, stack) with

([1, _) =~ stack

(Push n :: pgm',) - exec e (n :: stack) pgm'

(Read x :: pgm',) - exec e (e x :: stack) pgm'

(IPlus :: pgm', n:: m :: stack') -» exec e ((m+n) :: stack') pgm'
(22 pgm',) - exec e stack pgm'

Proving a property with the Coq software
ACM SIGPLAN Programming Languages Software award 2013

ACM Software System award 2013 codq.inria.fr
Theorem toy-compiler-correct: semantics
forall e a, (eval, exec)
exec e [] (compile a) = [eval e a]. |

compiller
(compile)

J

12

https://coq.inria.fr/

Proving a property with the Coq software

ACM SIGPLAN Programming Languages Software award 2013
ACM Software System award 2013 codq.inria.fr

Theorem toy-compiler-correct:

forall e a,

exec e [] (compile a)
Proof.

intros;
.. (* not shown here ¥*)
Qed.

semantics compiler
(eval, exec) (compile)

= [eval e a].) y

proof

guided by Coq

Extraction compile.

\ uoljoeIXe

compiler.ml |

OCaml

13

https://coq.inria.fr/

optimizations

memory model
Part 3 1ntermedlate language ..
How to turn CompCert | Verlf ledéalﬁbllé?%ﬁgﬁstep
from a prototype in a lab abstract syntax - observable events
_ formal semantics

iINto a real-world compiler?
P dataf low solver

The CompCert formally verified compiler
(X.Leroy, S.Blazy et al.) https://compcert.org

A moderately optimizing C compiler

Targets several architectures (PowerPC, ARM, RISC-V and x86)
Programmed and verified using the Coq proof assistant

Shared infrastructure for ongoing research

Used in commercial settings (for emergency power generators and flight
control navigation algorithms) and for software certification - Abslnt company

Improved performances of the generated code while providing proven
traceabillity information

ACM Software System award 2021
ACM SIGPLAN Programming Languages Software award 2022

15

CompCert compiler: 11 languages, 18 passes

no side-effect . iminati .
CompCertC I — Clight type elimination C#minor J
determinization

Optimisations: constant prop., CSE, tail calls, stack allocation

Q (LCM), (software pipelining) of «&»variables

CFG construction instruction
expr. decomp. . ' .

RTL J<;p_p_ CminorSel J<M— Cminor J
register (instruction scheduling)
allocation (IRC) ()

| linearisation | spl)li_lling, reloactj.ing
LTL F_Mf the CFG LTLin |———>Ca Ng convertons Linear J

layout of
stack frames

ASM code |
generation Mach J

ASM

16

CompCert compiler: 11 languages, 18 passes

C#minor

CompCertC Clight

Benhartims semantics

sL s
shxg | ghte | shng S
h;
termination = | /7divergence
N
execL P Db Behaviors

17

Proving semantics preservation:

the simulation approach

semantics
(execCompCertC, execASM)

J

compiler

Preserved behaviors = termination and divergence

Theorem compiller-correct:
V S C b,
compiler S = OK C -
execCompCertC S b -
execASM C b.

Proof technique: simulation diagram

U

« The generated code must
behave as prescribed by the
semantics of the source
program. »

source S
state
t

|

So

U

18

Proving semantics preservation:
the simulation approach

source S1 B C1 = target S - C
state state
8 8 >
2
+ or -
So ~ Co S’ with 0 < m(S’) < m(S)
Ingredients
to to:

o inductio?n on the execution relation

- invariant &~ between source and target states

Sn—1 ~ Cn—1
 measure m from source states to a well-founded set
tn—1 tn—1
|
Sh Cn

U

Which operational semantics for C-like languages”?

Reduction semantics to model diverging executions = 1/s =1’/ S’

e ——

Some rules generate instructions that do not exist in the source program.

(whilebdoi)/s —i;whilebdoi/s when eval s b = true

(if bthenil elsei?2);i/s = 11;i/s when eval s b = true

Raises two issues when using simulation diagrams:
* Impractical to reason on the execution relation

e difficult to define the measure

20

Continuation-based semantics to the rescue
[Appel, Blazy TPHOL O7]

i/k/s—=1/k’/s | Continuation: remaining computations and their structure

*

No generation of new instruction: I’ is always a subterm of |

(ifbthenilelsei2)/k/s—=i1/k/s when eval s b = true

New kinds of rules for dealing with continuations

(i1;12)/k/s—=>i1/i2ek/s Focus (on the left of a sequence)

W

skip/i®k/s —=1/k/s | Resume (the remaining computations)

—*

21

Part 3: summary

correctness
theorem

__Is proved by

_is) reduction g emit
about ~ semantics

traces |

» 9AI9SQ0

termination | divergence |

continuations |;"

reasoning e

simulation
diagrams

UM
“pauayibuais

anti-stuttering
measure

22

optimizations

Part 4 memory model

Beyond CompCert 1ntermed1ate langgigﬁ e C““““‘}i‘{g’ﬁs
¢ secure compilation VCI' lflegl C()InpllelTS step
o ' ' ' ;)StlaCtS ntax bservable events
¢ just-in-time compilation fOl’l’ﬂﬂl semyantlcs

& WIP dataflow solver

Turning CompCert into a secure compiler
CT-CompCert [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL'20]

Cryptographic constant-time (CC

unsigned nok-function (unsigne

{ 1f (secret) return y; else
e e

ramming discipline

, unsigned y, bool secret)
n

pr

X; }
e ——RRT

unsigned ok-function (unsigned X, unsigned y, bool secret)
{ return x © ((y ~ X) & (-(unsigned)secret)); }

e e EEE——_—_——

How to turn CompCert into a formally-verified secure compiler?

Theorem compiller-correct: Theorem compiller-preserves-CCT:
V S C b, V s C,
compiler S = OK C - compiler S = OK C -
execCompCertC S b - 1sCCT S -
execASM C b. 1sCCT C.

24

Which proof technique for the isCCT policy”?

Observational non-interference: observing program leakage (boolean guards and memory
accesses) during execution does not reveal any information about secrets

Theorem compiler-preserves-CCT: q —Lﬂ)S 1sCCT S
V s C, l 2 : / : - /
compiler S = OK C - - = | with (p(Sl,Sl) implies Z = ¢
1sCCT S -
1sCCT C.

T —

Difficulty: tricky proofs!

R e S

25

Proving CCT preservation:
pback to simulation diagrams

Proof-engineering: leverage the existing proof scripts as much as possible

must predict the
number of steps
at target level

26

Verifying just-in-time (JIT) compilation sarriere's Php 12/2022)
[Barriere, Blazy, Fluckiger, Pichardie, Vitek, POPL'21] and [Barriere, Blazy, Pichardie, POPL’ 23]

source § monitor
' ﬁ
f(); P ; ;
o0 E IR interpreterj optimization native exec. J
¢
3
optim. T}z o | o L
U \l7 A JIT compiler interleaves the execution of a program with its optimizations
:f-c . . " . . " . " "
new % Dynamic speculation: specializes functions, requires deoptimization
program | =
W, -%
dynamic § Non-deterministic semantics: either deoptimize to the source program or
optim. 5 continue to the next instruction in the optimized program
J T i{o

Proving semantics preservation:
the simulation approach

source
program
Po

S+

So

~~)
~~)

U

U

U

C+

|

Co

JIT
program
Po

dynamic
optim.

JIT
program
P+

dynamic
optim.

JIT
program
P>

Both the program and the execution
state are evolving

28

Nested simulations for JIT veritication

source
program
Po

S+

~JIT

"~~)
~JIT

C+

3

JIT
program
Po

4)

dynamic

optim.

JIT
program
P+

4)

dynamic

optim.
~—

JIT
program
P2

Both the program and the execution
state are evolving

Invariant =,r: at any point during JIT
execution

» the current state C; corresponds
to a source state S;

» the curent JIT program P is
equivalent to the source
program Po

Nested simulation: this equivalence
IS expressed with another simulation

29

)

Work In progress = ~
3
2
s mm
g l new optimizations
= J - J

l C2

C#minor Crminor CminorSel RTL '—> SSA J

CompCertC Clight J—}

Mach

J_>
J<_

Linear

)..,
J4_

LTLin

e
P

new target l

! I

LTL J GSA J

l
J

(e)—

pua-)oeq mau

30

Conclusion and perspectives

CompCert is a shared infrastructure for ongoing research

- compilation : ProbCompCert (Boston College, USA), L2C (Tsinghua, China),
Velus (DIENS, Fr), CompCertO (Yale, USA), VeriCert (Imperial College, GB),
CompCert-KVX (Verimag, Fr)

e program logics: VST (Princeton, USA), Gillian (Imperial College, GB),
VeriFast (KUL, Be)

- static analysis : Verasco (Inria, Fr)

Opens the way to the trust of development tools

From early intuitions to fundamental formalisms ...
verification tools that automate these ideas ...
actual use in the critical software industry

31

Thank you!

Questions?

32

