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Deductive verification 
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From early intuitions …

A. M. Turing.  
Checking a large routine.1949.
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… to deductive-verification and automated tools 
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Another historical example

Boyer-Moore’s majority. 1980


Given N votes, determine the majority if any
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majority = A

cpt_delta = 3
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A A A C C B B C C C B C C
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Part 1: summary
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Part 2:  
basics of  
verified compilation
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Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end 
specification: 


This specification becomes mathematically precise as soon as we have formal 
semantics for the source language and the machine language. 
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The generated code must behave as prescribed 
by the semantics of the source program. 



An old idea …

Mathematical Aspects of Computer Science, 1967
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Machine Intelligence (7), 1972



Now taught to Masters students 
(Mechanized semantics: when machines reason about their languages, X.Leroy)  
(Software foundations, B.Pierce et al.)
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type exp = Nb of int | Id of string | Plus of exp * exp

type state = string → int

type instr = Push of int | Read of string  | IPlus

let rec exec (e:state)(stack: int list)(pgm: instr list): int list =
  match (pgm, stack) with
  | ([], _) → stack
  | (Push n :: pgm', _) → exec e (n :: stack) pgm'
  | (Read x :: pgm', _) → exec e (e x :: stack) pgm'
  | (IPlus :: pgm', n:: m :: stack') → exec e ((m+n) :: stack') pgm'
  | (_ :: pgm', _) → exec e stack pgm'

let rec eval (e:state)(a:exp): int =  
match a with
  | Nb n → n       
  | Id x → e x
  | Plus (a1,a2) → (eval e a1)+(eval e a2)

semantics 
(eval, exec)

compiler 
(compile)

3
6 9

IPlus

n
Push n

4
Read x

e(x)=4

let rec compile (a:exp): instr list =  match a with
  | Nb n →  [ Push n ]
  | Id x →  [ Read x ]
  | Plus (a1,a2) → (compile a1)@ (compile a2)@ [IPlus]

com
pilation



Proving a property with the Coq software 
ACM SIGPLAN Programming Languages Software award 2013 
ACM Software System award 2013                                        coq.inria.fr
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Theorem toy-compiler-correct: 
  forall e a, 
  exec e [] (compile a) = [eval e a].

semantics 
(eval, exec)

compiler 
(compile)

https://coq.inria.fr/


Proving a property with the Coq software 
ACM SIGPLAN Programming Languages Software award 2013 
ACM Software System award 2013                                        coq.inria.fr
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Theorem toy-compiler-correct: 
  forall e a, 
  exec e [] (compile a) = [eval e a].
Proof.
  intros; 
  … (* not shown here *)
Qed.

semantics 
(eval, exec)

compiler 
(compile)

extraction

compiler.ml

Extraction compile.

proof  
guided by Coq

https://coq.inria.fr/


Part 3 
How to turn CompCert  
from a prototype in a lab  
into a real-world compiler?



The CompCert formally verified compiler 
(X.Leroy, S.Blazy et al.)                                                            https://compcert.org

A moderately optimizing C compiler


Targets several architectures (PowerPC, ARM, RISC-V and x86)


Programmed and verified using the Coq proof assistant


Shared infrastructure for ongoing research 


Used in commercial settings (for emergency power generators and flight 
control navigation algorithms) and for software certification - AbsInt company 
Improved performances of the generated code while providing proven 
traceability information


ACM Software System award 2021 
ACM SIGPLAN Programming Languages Software award 2022
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CompCert compiler: 11 languages, 18 passes

Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

Mach
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stack allocation

of «&»variables

instruction

selection

register
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linearisation

of the CFG

layout of

stack frames

ASM code

generation

CFG construction

expr. decomp.

Optimisations: constant prop., CSE, tail calls, 
(LCM), (software pipelining) 

(instruction scheduling)
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CompCert compiler: 11 languages, 18 passes

C#minor

CminorCminorSelRTL

Linear

MachASM
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Proving semantics preservation:  
the simulation approach

Preserved behaviors = termination and divergence 
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Theorem compiler-correct: 
  ∀ S C b, 
  compiler S = OK C →  
  execCompCertC S b →  
  execASM C b.

« The generated code must 
behave as prescribed by the 

semantics of the source 
program. »

semantics  
(execCompCertC, execASM)

compiler 
 

Proof technique: simulation diagram

target 
state

source 
state

S1
≈ C1

C2≈S2

+
t1t1



Proving semantics preservation:  
the simulation approach
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with 0 ≤ m(S’) < m(S)

or

S ≈ C

S’

≈
ε

≈ Cn-1Sn-1

t2t2

Cn≈Sn

+
tn-1tn-1

target 
state

source 
state

S1
≈ C1

C2≈S2

+
t1t1

Ingredients

• induction on the execution relation


• invariant  between source and target states


•measure m from source states to a well-founded set

≈



Which operational semantics for C-like languages?

Reduction semantics to model diverging executions
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(if b then i1 else i2); i / s → i1; i / s         when eval s b = true

i / s → i’ / s’ 

(while b do i) / s → i; while b do i / s         when eval s b = true

Some rules generate instructions that do not exist in the source program.


Raises two issues when using simulation diagrams:

• impractical to reason on the execution relation 

•difficult to define the measure



Continuation-based semantics to the rescue  
[Appel, Blazy TPHOL’07]

Continuation: remaining computations and their structure


No generation of new instruction: i’ is always a subterm of i


New kinds of rules for dealing with continuations


Focus (on the left of a sequence)


Resume (the remaining computations)
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i / k / s → i’ / k’ / s’ 

(if b then i1 else i2) / k / s → i1 / k / s          when eval s b = true

(i1;i2) / k / s → i1 / i2 ● k / s 

skip / i ● k / s → i / k / s 



Part 3: summary
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Part 4 
Beyond CompCert 

 secure compilation 
 just-in-time compilation 
 WIP



Turning CompCert into a secure compiler  
CT-CompCert     [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL’20]

Cryptographic constant-time (CCT) programming discipline
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unsigned nok-function (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned ok-function (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }

Theorem compiler-preserves-CCT: 
  ∀ S C, 
  compiler S = OK C →  
  isCCT S → 
  isCCT C.

Theorem compiler-correct: 
  ∀ S C b, 
  compiler S = OK C →  
  execCompCertC S b →  
  execASM C b.

How to turn CompCert into a formally-verified secure compiler?



Which proof technique for the isCCT policy? 
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Difficulty: tricky proofs!

S1
≈ C1

C2≈S2

t’t
S’1 ≈ C’1

C’2≈S’2

t’t
n1

n2

Theorem compiler-preserves-CCT: 
  ∀ S C, 
  compiler S = OK C →  
  isCCT S → 
  isCCT C.

S1
ℓ S2

S′ 1
ℓ′ S′ 2

with φ(S1, S′ 1) implies ℓ = ℓ′ 

isCCT S

Observational non-interference: observing program leakage (boolean guards and memory 
accesses) during execution does not reveal any information about secrets

Indistinguishability property : share public values, but may differ on secret valuesφ(Si, S′ i)



Proving CCT preservation:  
back to simulation diagrams
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must predict the 
number of steps 

at target level

Proof-engineering: leverage the existing proof scripts as much as possible


t’=t

or (t’  and t is leak only)= ε
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Verifying just-in-time (JIT) compilation [Barrière’s PhD 12/2022] 
[Barrière, Blazy, Flückiger, Pichardie, Vitek, POPL’21] and  [Barrière, Blazy, Pichardie, POPL’23]

A JIT compiler interleaves the execution of a program with its optimizations


Dynamic speculation: specializes functions, requires deoptimization


 
Non-deterministic semantics: either deoptimize to the source program or 
continue to the next instruction in the optimized program
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Proving semantics preservation:  
the simulation approach
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Nested simulations for JIT verification
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Invariant ≈JIT: at any point during JIT 
execution


• the current state Ci corresponds 
to a source state Si


• the curent JIT program Pi is 
equivalent to the source 
program P0 


Nested simulation: this equivalence 
is expressed with another simulation
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Work in progress    🏗 
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Conclusion and perspectives

CompCert is a  shared infrastructure for ongoing research 

•compilation : ProbCompCert (Boston College, USA), L2C (Tsinghua, China), 
Velus (DIENS, Fr), CompCertO (Yale, USA), VeriCert (Imperial College, GB), 
CompCert-KVX (Verimag, Fr)

•program logics: VST (Princeton, USA), Gillian (Imperial College, GB),  
VeriFast (KUL, Be)

•static analysis : Verasco (Inria, Fr) 


Opens the way to the trust of development tools 


From early intuitions to fundamental formalisms … 
                                      verification tools that automate these ideas … 
                                      actual use in the critical software industry
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Thank you!                                                 Questions?
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