

07/06/2023Commissariat à l’énergie atomique et aux énergies alternatives Auteur

FROM RESEARCH TO INDUSTRY

Commissariat à l’énergie atomique et aux énergies alternatives - www.cea.fr

 Revisiting Program Analysis

 through the Security Lens

Sébastien Bardin

Senior Researcher, CEA Fellow

LSL/SABR

Journées Nationales du GDR GPL / AFADL 2023

| 2Sébastien Bardin

https://binsec.github.io/https://binsec.github.io/

The BINSEC Group:
 ADAPT FORMAL METHODS TO BINARY-LEVEL SECURITY ANALYSIS

• Looking for postdoc & PhD candidates

| 3

• Program Analysis (PL) and Formal Methods come from critical safety needs
 Damn good there (in the hands of experts)

• Now : a move from safety concerns to security concerns

• Questions:
 how can we use standard PL/FM into a security context ?
 how does code-level security differ from code-level safety?
 how does security differ from safety ? [focus on the attacker]

• This talk: share some insights from our biased experience [CAV 21, ESOP 2023]

Sébastien Bardin

WHY THIS TALK ?

| 4

TEAM WORK SINCE 2012

Sébastien Bardin

| 5

Prologue : ABOUT FORMAL METHODS AND CODE ANALYSIS

Success in (regulated) safety-critical domains

• Reason about the
meaning of programs

• Reason about infinite
sets of behaviours• Typical ingredients:

transition systems,
automata, logic, …

Sébastien Bardin

| 6

• Weakest precondition calculi [1969, Hoare]
• Abstract Interpretation [1977, Cousot & Cousot]
• Model checking [1981, Clarke - Sifakis]

They knew it was impossible, so they did it anyway

Answers
• Forget perfect precision: bugs xor proofs
• Or focus only on « interesting » programs
• Or put a human in the loop
• Or forget termination

Cannot have analysis that
• Terminates
• Is perfectly precise

On all programs

Sébastien Bardin

| 7

• Weakest precondition calculi [1969, Hoare]
• Abstract Interpretation [1977, Cousot & Cousot]
• Model checking [1981, Clarke - Sifakis]

They knew it was impossible, so they did it anyway

Answers
• Forget perfect precision: bugs xor proofs
• Or focus only on « interesting » programs
• Or put a human in the loop
• Or forget termination

Cannot have analysis that
• Terminates
• Is perfectly precise

On all programs

Sébastien Bardin

| 8

Given a path of a program
• Compute its « path predicate » f
• Solution of f = input following the path
• Solve it with powerful existing solvers

EXAMPLE 2SYMBOLIC EXECUTION (Godefroid 2005)

Find real bugs

Bounded verification

Flexible

Sébastien Bardin

| Sébastien Bardin

BACK TO BASICS

01001100
00101011
11000101
010 ..

010100111
101101110
111011000
0100 ..

EXECUTABLEOBJECT CODEASSEMBLY CODESOURCE CODE

COMPILE ASSEMBLE LINK

RUN

10110111
11101100
11000101
010 ..

THIRD PARTY
LIBRARY

HAND WRITTEN
ASSEMBLY

INLINE
ASSEMBLY

| Sébastien Bardin

WHY GOING DOWN TO BINARY-LEVEL SECURITY ANALYSIS?

Malware comprehensionMalware comprehensionNo source codeNo source code Post-compilationPost-compilation

Protection evaluationProtection evaluation Very-low level reasoningVery-low level reasoning

| 11

EXAMPLE: COMPILER BUG (?)

• secure source code
• insecure executable
• secure source code
• insecure executable

Sébastien Bardin

| 12

OUTLINE

• Introduction

• Challenges of automated binary-level security analysis
• BINSEC & Symbolic Execution for Binary-level Security

• Robust reachability and bugs that matter
• Adversarial reachability

• Conclusion, Take away and Disgression

Sébastien Bardin

| 13

OUTLINE

• Introduction

• Challenges of automated binary-level security analysis
• BINSEC & Symbolic Execution for Binary-level Security

• Robust reachability and bugs that matter
• Adversarial reachability

• Conclusion, Take away and Disgression

Sébastien Bardin

| 14

New challenges!

• Attacker• Binary code • Properties

Sébastien Bardin

| 15

New challenges!

• Attacker• Binary code • Properties

Sébastien Bardin

| 16

CHALLENGE: BINARY CODE LACKS STRUCTURE

• Instructions?
• Control flow?
• Memory structure?

Sébastien Bardin

| 17

DISASSEMBLY IS ALREADY TRICKY! • code – data ??
• dynamic jumps (jmp eax)

• Recovering the CFG is already a
challenge!

Sébastien Bardin

| 18Sébastien Bardin - Seminar CEA - FB, 2021

BINARY CODE SEMANTIC LACKS STRUCTURE

Problems
• Jump eax
• Untyped memory
• Bit-level resoning

| 19

New challenges!

• Attacker• Binary code • Properties

Sébastien Bardin

07/06/2023Commissariat à l’énergie atomique et aux énergies alternatives Auteur

New challenge : safety is not hyper-property :-)

Sébastien Bardin

Information leakage Properties over pairs of executions

07/06/2023Commissariat à l’énergie atomique et aux énergies alternatives Auteur

New challenge : safety is not hyper-property :-)

Information leakage Properties over pairs of executions

• New problems

• Hyperproperties
• Quantitative

• Identify « bugs that matters »

| 22

New challenges!

• Attacker• Binary code • Properties

Sébastien Bardin

Main topic of the
day

| 23

CHALLENGE: ATTACKER

Sébastien Bardin

Nature is not nice Attacker is evil

| 24Sébastien Bardin

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

| 25Sébastien Bardin

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

• Still, our current attacker plays the rules: respects the program interface
• Can craft very smart input, but only through expected input sources

| 26Sébastien Bardin

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

• Still, our attacker plays the rules: respects the program interface
• Can craft very smart input, but only through expected input sources

• What about someone who really do not play the rules?
• Side channel attacks
• Micro-architectural attacks
• Fault injections

| 27Sébastien Bardin

Another Line of attack : ADVERSARIAL BINARY CODE

• self-modification
• encryption
• virtualization
• code overlapping
• opaque predicates
• callstack tampering
• …

• self-modification
• encryption
• virtualization
• code overlapping
• opaque predicates
• callstack tampering
• …

| 28

OUTLINE

• Introduction

• Challenges of automated binary-level security analysis
• BINSEC & Symbolic Execution for Binary-level Security

• Robust reachability and bugs that matter
• Adversarial reachability

• Conclusion, Take away and Disgression

Sébastien Bardin

Commissariat à l’énergie atomique et aux énergies alternatives Auteur

BINSEC: brings formal methods to binary-level security analysis

 Advanced reverse

 Vulnerability analysis

 Binary-level security proofs

 Low-level mixt code (C + asm)

 …

ProtectProveBreak

 Explore many input at once
 Find bugs
 Prove security

 Multi-architecture support

 x86, ARM, RISC-V

 32bit, 64bit

https://binsec.github.io/https://binsec.github.io/

Commissariat à l’énergie atomique et aux énergies alternatives Auteur

BINSEC: brings formal methods to binary-level security analysis

 Advanced reverse

 Vulnerability analysis

 Binary-level security proofs

 Low-level mixt code (C + asm)

 …

ProtectProveBreak

 Explore many input at once
 Find bugs
 Prove security

 Multi-architecture support

 x86, ARM, RISC-V

 32bit, 64bit

https://binsec.github.io/https://binsec.github.io/

| 31

Key 1: INTERMEDIATE REPRESENTATION [CAV’11]

• Concise
• Well-defined
• Clear, side-effect free

Sébastien Bardin

| 32

INTERMEDIATE REPRESENTATION

• Concise
• Well-defined
• Clear, side-effect free

Sébastien Bardin

| 33

Given a path of a program
• Compute its « path predicate » f
• Solution of f = input following the path
• Solve it with powerful existing solvers

EXAMPLE 2Key 2: SYMBOLIC EXECUTION (Godefroid 2005)

Find real bugs

Bounded verification

Flexible

Sébastien Bardin

| 34

PATH PREDICATE COMPUTATION & SOLVING

Y0 = 0 /\ Z0=3SMT Solver

my input!!

Blackbox
solvers

Boolector

Sébastien Bardin

| 35

PATH PREDICATE COMPUTATION & SOLVING

Y0 = 0 /\ Z0=3SMT Solver

my input!!

Beware
 Path explosion
Constraint solving cost

Blackbox
solvers

Key ingredients
 Path search
Constraint solving

Many optimizations
Preprocessing, caching, etc.
Search heuristics, path pruning, merge, etc.
Concretization

Sébastien Bardin

| Sébastien Bardin

Typical application : Vulnerability finding & automated testing

Intensive path exploration

Target critical bugs
or high coverage

From scratch
or enhanced prior test suite

Symbolic execution – fuzzing – static analysis

| 37

OUTLINE

• Introduction

• Challenges of automated binary-level security analysis
• BINSEC & Symbolic Execution for Binary-level Security

• Robust reachability and bugs that matter
• Adversarial reachability

• Conclusion, Take away and Disgression

Sébastien Bardin

| 38

• Problem : not all bugs are equal

Sébastien Bardin

• Attacker• Binary code • Properties

| 39

• Reachability-based reasoning
 may produce
 false positive in practice

The problem of « false positive in practice »

Sébastien Bardin

| 40

• Reachability-based reasoning
 may produce
 false positive in practice

The problem of « false positive in practice »

What?!!

Safety is not
security …

Sébastien Bardin

| 41

• Reachability-based reasoning
 may produce
 false positive in practice

• for example here:
• SE will try to solve a * x + b > 0
• May return a = -100, b = 10, x = 0

• Problem: x is not controlled by the user
• If x change, possibly not a solution anymore
• Example: (a = -100, b = 10, x = 1)

The problem of « false positive in practice »

What?!!

Safety is not
security …

Sébastien Bardin

| 42

• Reachability-based reasoning
 may produce
 false positive in practice

• for example here:
• SE will try to solve a * x + b > 0
• May return a = -100, b = 10, x = 0

• Problem: x is not controlled by the user
• If x change, possibly not a solution anymore
• Example: (a = -100, b = 10, x = 1)

The problem of « false positive in practice »

What?!!

Safety is not
security …

In practice: canaries, secret key in
uninitialized memory, etc.

Sébastien Bardin

| 43

Problems with standard reachability?
• Value in blue is checked against canary
• Canary is a parameter

• In practice, only 2^-32 to bypass canary
• Not considered an attack
• In practice, only 2^-32 to bypass canary
• Not considered an attack

Still, Symbolic Execution reports a bug
• just need canary ==rrrr
• False positive

Still, Symbolic Execution reports a bug
• just need canary ==rrrr
• False positive

Sébastien Bardin

| 44

Problems with standard reachability? (2)

• Randomization-based protections
• Guess the randomness

• Bugs involving uninitialized memory
• Guess memory content

• Undefined behaviours
• Exist also in hardware

• Stubbing functions (I/O, opaque, crypto, …)
• Guess the hash result …

• Underspecified initial state

Sébastien Bardin

| 45

Our proposal [CAV 2018, CAV 2021, FMSD 2022]

Sébastien Bardin

| 46

Adapting BMC and SE

Sébastien Bardin

| 47

Proof-of-concept implementation

Sébastien Bardin

| 48

Case-studies: 4 CVE

Sébastien Bardin – 2022

| 49

CVE-2019-19307 in Doas: beyond attacker-controlled input

Sébastien Bardin – 2022

| 50

Alternative formalism: non-interference

Sébastien Bardin

| 51

Alternative formalisms (2)

Sébastien Bardin

Need a dedicated proof method!

| 52

Stepping back

Sébastien Bardin

• Robust reachability draws a line between some good bugs and bad bugs
• Based on replicability

• Several formalisms can express robust reachability [games, ATL, hyperLTL, CTL]

• Yet no efficient software-level checkers

• A few prior attempts, on different dimensions
• Quantitative or probabilistic approaches (model checking, non interference)
• Automated Exploit Generation (Avgerinos et al., 2014)
• Test Flakiness (O’Hearn, 2019) [a specific case of robust reachbaility]
• Fair model checking (Hart et al., 1983)

• Qualitative « all or nothing » robust reachability may be too strong
• Mitigation : add user-defined constraints over the uncontrolled variables
• WIP : quantitative definitions, inference of robustness conditions

| 53

Potential applications

Sébastien Bardin

• Better testing / bug finding tools
• Ex: find replicable bugs
• Ex: generate non-flaky tests

• Test suite evaluation
• Are the test case replicable?

• Bug prioritisation
• Replicable bugs first

| 54

Idea : reduce quantified formula to
the quantifier-free case

• Approximation
• But reuse the whole SMT machinery

// apparté : solving robustness queries w/o quantifiers [CAV 2018]

Key insights:
• independence conditions
• formula strengthening

Sébastien Bardin

| 55

OUTLINE

• Introduction

• Challenges of automated binary-level security analysis
• BINSEC & Symbolic Execution for Binary-level Security

• Robust reachability and bugs that matter
• Adversarial reachability

• Conclusion, Take away and Disgression

Sébastien Bardin

| 56

• Problem : what about the attacker capabilities ?

Sébastien Bardin

• Attacker• Binary code • Properties

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Context

❏ Many techniques and tools for security evaluations.
❏ Usually consider a weak attacker, able de craft smart inputs.
❏ Real-world attackers are more powerful: various attack vectors + multiple actions

in one attack.

❏

Electromagnetic pulses Laser beamPower glitch Clock glitch

Hardware attacks

Rowhammer

Software-implemented hardware attacks

DVFSFaultline

Load Value InjectionRace condition Spectre

Micro-architectural attacks

Man-At-The-End attacks

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Context

❏ Many techniques and tools for security evaluations.
❏ Usually consider a weak attacker, able de craft smart inputs.
❏ Real-world attackers are more powerful: various attack vectors + multiple actions

in one attack.

❏

Electromagnetic pulses Laser beamPower glitch Clock glitch

Hardware attacks

Rowhammer

Software-implemented hardware attacks

DVFSFaultline

Load Value InjectionRace condition Spectre

Micro-architectural attacks

Man-At-The-End attacks

• How to deal with that ?
• principled
• efficient

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

State-of-the-Art: software-implemented fault injection

Mutant generation: create a new
mutated program for each fault
configuration.

k (faults) among n (lines) mutant
generated

59

Forking technique: fork the analysis
with a fault at each possible fault
location.

k (faults) among n (lines) paths created

❏ Both faces scalability issues
(path explosion) hindering mutli-
fault analysis.

❏ They don’t provide formalization
of the underlying problem.

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Contributions

❏ We formalize the Adversarial Reachability problem

❏ We propose Adversarial Symbolic Execution, with dedicated optimizations.

❏ We propose an implementation and evaluation of our technique.

❏ We perform a security analysis of the WooKey bootloader.

60 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Adversarial reachability

Goal: have a formalism extending standard reachability to reason about a program execution in
presence of an advanced attacker.

Adversarial reachability: A location l is adversarialy reachable in a program P for an attacker
model A if S0 ↦* l,
where ↦* is a succession of program instructions interleaved with faulty transitions.

61

input s0

state at location l
faulted transition

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Forking encodings

62

x := y x := y x := faulti

nbf ++

Non deterministic choice
between fault or normal
if nbf < maxf

❏ Covers all adversarial behaviors
❏ Number of path exponential with #

fault injection points

Original Forking

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Forkless encodings and FASE

63

x := y

❏ Covers all adversarial behaviors
❏ Only 1 path
❏ More complex formulas

x := ite herei ? faulti : y

herei ∈ [0,1], Σ herei ≤ maxf

Original Forkless

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Early Detection of fault Saturation (EDS)

64

❏ Covers all adversarial behaviors, as complete as FASE
❏ Only 1 path
❏ Reduce number of fault injections along a path

SAT with a fault margin
or SAT with exactly the fault
budget
or infeasible

FASE FASE-EDS

We need maxf faults to
go beyond that point on
that path.

Potentially faulted
instruction (with ite)

Instruction not faulted

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Injection On Demand (IOD)

65

FASE FASE-IOD

Faulted instruction

❏ Covers all adversarial behaviors, as complete as FASE
❏ Only 1 path
❏ Reduce number of fault injections
❏ Additional queries

We can’t go beyond that
point on that path without
more faults.

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Injection On Demand (IOD)

66

FASE

We can’t go beyond that
point on that path without
more faults.

Faulted instruction

FASE-IOD

Path predicate switched for
the faulted one

❏ Covers all adversarial behaviors, as complete as FASE
❏ Only 1 path
❏ Reduce number of fault injections
❏ Additional queries

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Injection On Demand (IOD)

67

FASE

Faulted instruction

FASE-IOD

We can’t go beyond that
point on that path without
more faults.

Bonus: under-
approximation of nbf

❏ Covers all adversarial behaviors, as complete as FASE
❏ Only 1 path
❏ Reduce number of fault injections
❏ Additional queries

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

RQ2 - scaling without path explosion

68

➔ Forking explodes in explored paths while FASE doesn’t.
➔ Translates to improved analysis time overall.

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Security scenarios using different fault models

CRT-RSA: [1]
❏ basic vulnerable to 1 reset → OK
❏ Shamir (vulnerable) and Aumuler

(resistant) → TO

Secret-keeping machine: [2]
❏ Linked-list implementation vulnerable

to 1 bit-flip in memory → OK
❏ Array implementation resistant to 1

bit-flip in memory → OK
❏ Array implementation vulnerable to 1

bit-flip in registers → OK

69

[1] Puys, M., Riviere, L., Bringer, J., Le, T.h.: High-level simulation for multiple fault injection evaluation. In: Data
Privacy Management, Autonomous Spontaneous Security, and Security Assurance. Springer (2014)
[2] Dullien, T.: Weird machines, exploitability, and provable unexploitability. IEEE Transactions on Emerging Topics
in Computing (2017)
[3] de Ferrière, F.: Software countermeausres in the llvm risc-v compiler (2021),
https://open-src-soc.org/2021-03/media/slides/3rd-RISC-V-Meeting-2021-03-30-15h00-Fran%C3%A7ois-de-Ferri
%C3%A8re.pdf
[4] Lacombe, G., Feliot, D., Boespflug, E., Potet, M.L.: Combining static analysis and dynamic symbolic execution in
a toolchain to detect fault injection vulnerabilities. In: PROOFS WORKSHOP (SECURITY PROOFS FOR
EMBEDDED SYSTEMS) (2021)

Secswift countermeasure: llvm-level CFI
protection by STMicroelectronics [3]
❏ SecSwift impementation [4] applied to

VerifyPIN_0 → early loop exit attack with 1
arbitrary data fault or test inversion in valid
CFG

 Sébastien Bardin

Sébastien Bardin

Adversarial Reachability for Program-level Security Analysis - Séminaire CaoP 15/02/2023

Case study

WooKey bootloader: secure data storage by ANSSI, 3.2k loc.
Goals:

1. Find known attacks (from source-level analysis)
a. Boot on the old firmware instead for the newest one [1]
b. A buffer overflow triggered by fault injection [1]
c. An incorrectly implemented countermeasure protecting against one test inversion [2]

2. Evaluate countermeasures from [1]
a. Evaluate original code → We found an attack not mentioned before
b. Evaluate existing protection scheme [1] (not enough)
c. Propose and evaluate our own protection scheme

70

[1] Lacombe, G., Feliot, D., Boespflug, E., Potet, M.L.: Combining static analysis and dynamic symbolic execution in a toolchain to detect fault injection vulnerabilities. In: PROOFS WORKSHOP (SECURITY
PROOFS FOR EMBEDDED SYSTEMS) (2021)
[2] Martin, T., Kosmatov, N., Prevosto, V.: Verifying redundant-check based countermeasures: a case study. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. (2022)

 Sébastien Bardin

Sébastien Bardin

| 71

Stepping back

Sébastien Bardin

• Adversarial reachability takes an active attacker into account
• Well known in cryptographic protocol verification, not for code

• generic: reachability, hyper-reachability, non termination

• Scalability ?
• Which capabilities for the attacker? [link with Harware security community]
• Strong link with robust reachability

| 72

OUTLINE

• Introduction

• Challenges of automated binary-level security analysis
• BINSEC & Symbolic Execution for Binary-level Security

• Robust reachability and bugs that matter
• Adversarial reachability

• Conclusion, Take away and Disgression

Sébastien Bardin

| 73

TAKE AWAY: SECURITY IS NOT SAFETY

Sébastien Bardin

• Attacker• Binary code • Properties

• Reachability is well suited for safety, yet
• security leads to many new interesting variations

• Still many things to do !!

• Symbolic Execution appears to be versatil enough

• BINSEC is open source, check it [with us]

- Fun for FM/PL researchers
- Important applications

https://binsec.github.io/https://binsec.github.io/

• Looking for postdoc & PhD

07/06/2023Commissariat à l’énergie atomique et aux énergies alternatives Auteur

 Commissariat à l’énergie atomique et aux énergies alternatives - www.cea.fr

THANK YOU

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74

