Software Visualization or How to See and Explore the Intangible

Houari Sahraoui
, Université de Montréal
Acknowledgement

- Omar Benomar
- Simon Bouvier
- Karim Dhambri
- Guillaume Langelier
- Pierre Poulin
- Ahmed Sfayhi
Maintenance Tasks

- Maintenance problems

Diagram:
- Maintenance
 - Corrective
 - Adaptive
 - Perfective
 - Preventive
 - Reverse engineering
 - Feature location
 - Evolution analysis
 - Anomaly detection/correction
 - Quality assessment
 - Migration
Maintenance Tasks

• Many maintenance tasks difficult to automate
 – Multi-criteria decision making
 – Difficulty to capture/encode contextual information
 – Complexity/scalability
Interactive Visualization

• Semi-automatic approach
• Maintenance task = Set of reasoning and calculation modules
 – Set of automated modules AMs (explicit knowledge)
 – Human analyst module HM
 – Interactive visualization = Interface between AMs and HM
Visualization Tools for Maintenance

- Dozens of tools proposed each year in VLHCC, SOFTVIS, VISSOFT, SE journals, conferences and workshops, etc.
Visualization Tools for Maintenance

• Not used outside the community that developed them

• What’s wrong?
 – Not tailored for specific tasks
 – Effort and efficiency
 • Intrinsic complexity
 • Suitability
Modeling Maintenance as Interactive Visualization

• Maintenance world
 – Maintenance task
 • Exploring data extracted from software artifacts
 • Modifying software artifacts
 – Data
 • Entities (at different levels) with Properties, having Relationships and Structures
 • Viewpoints
 • Time
 – Operations
 • Aggregation, clustering, identification, etc.
Modeling Maintenance as Interactive Visualization

- Example: detecting anomalies
 - Example of anomaly definition
 - A Blob is a controller class, abnormally large, with almost no parents and no children. It mainly uses data classes, i.e. very small classes with almost no parents and no children.
 - Model
 - Entities: classes, methods
 - Properties: coupling, cohesion, complexity
 - Relationships: invocations, inheritance
 - Structure: architecture
 - Viewpoints: code, metrics
 - Time: multiple version
 - Operations: evaluate conditions, etc.
Modeling Maintenance as Interactive Visualization

- Visualization world

Views
Movements
Interactions
Modeling Maintenance as Interactive Visualization

• Visualization world
 – Interactive visualization
 • Processing large sets of multidimensional data
 • Mainly a perception problem
 – Human brain hard-wired to perceive things in a certain way
 – Understanding human perception reduces complexity and increases efficiency
Defining Views

- Software is intangible
- Representations of
 - Entities by shapes
 - Properties by graphical attributes of shapes
 - Relationships by connecting shapes
 - Structures by spatially organizing shapes
Defining Views

• Representing entities (principles)
 – Gestalt Rules of Perception
Defining Views

• Representing entities (principles)
 – Simplicity
Defining Views

• Representing entities (principles)
 – Continuity
Defining Views

• Representing entities (principles)
 – Continuity
Defining Views

• Representing entities
 – Example of VERSO

Interface Class/method
Defining Views

- Representing properties (principles)
 - Interaction between visual properties

Size vs depth
Defining Views

- Representing properties (principles)
 - Interaction between visual properties

Size vs depth
Defining Views

- Representing properties (principles)
 - Interaction between visual properties

Size vs orientation
Defining Views

- Representing properties (principles)
 - Interaction between visual properties

Size vs orientation
Defining Views

• Representing properties (principles)
 – Interaction between visual properties

Color & contrast
Defining Views

• Representing properties (principles)
 – Interaction between visual properties

Color & contrast
Defining Views

• Representing properties
 – Example of VERSO
Defining Views

- Representing relationships (principles)
 - Explicit representation vs size
Defining Views

- Representing relationships (principles)
 - Explicit representation vs size
Defining Views

• Representing relationships (principles)
 – Explicit representation vs size
Defining Views

• Representing relationships (principles)
 – On-demand representation
Defining Views

• Representing relationships (principles)
 – Flow maps

Minard, C. J. "Carte figurative et approximative des quantités de vin français exportés par mer en 1864".
Defining Views

- Representing relationships
 - Example of VERSO (filters)
Defining Views

• Representing relationships
 – Example of VERSO (Edge bundles)
Defining Views

• Representing structure (principles)
 – Whole vs parts

The unified whole is different from the sum of the parts.
Defining Views

- Representing structure (principles)
 - Law of proximity
Defining Views

- Representing structure
 - Example of VERSO
Defining Views

- Representing structure
 - Example of VERSO
Defining Views

- Representing structure
 - Example of VERSO
Movements between Views

• Within the same level (principles)
 – Change detection mechanisms
 • Change vs difference
 – Multiple-viewpoints management
 – Visual coherence
 • Spatial coherence
 • Temporal coherence
Movements between Views

• Spatial coherence
 – Difference detection
Movements between Views

• Spatial coherence
 – Change detection
Movements between Views

- Spatial coherence
 - Change detection
Movements between Views

• Spatial coherence
Movements between Views

• Spatial coherence
Movements between Views

- Temporal coherence
 - Change Blindness

Movements between Views

- Within the same level
 - Example of VERSO
Movements between Views

• Within the same level
 – Example of VERSO
Movements between Views

• Within the same level
 – Example of VERSO for the evolution
 • Fixed positions
 • Relative positions
Movements between Views

- Within the same level
- Example of VERSO for the evolution
- Fixed positions
- Relative positions
Movements between Views

- Within the same level
- Example of VERSO for the evolution
- Fixed positions
- Relative positions
Movements between Views

- Between levels (principles)
 - Keeping track of the context
 - Semantic zoom
Movements between Views
Movements between Views

• Between levels
 – Example of VERSO
Keeping track of the context
Keeping track of the context
Keeping track of the context
Interactions

• From analysis tasks to interaction scenarios
Example

- Blob Detection

 - Task description

Goal(Blob_detection, BlobSet, System)
{
 achieve($\text{Controller_class_detect}$, CDD, System)
 achieve(Data_class_verif, BlobSet, CDD)
}

Goal($\text{Controller_class_detect}$, Cand, Scope)
{
 Filter(Scope, Cand, ishigh WMC and $\text{ininterval LOW MEDIUM LCOM5}$ and islow DIT)
}

Goal(Data_class_verif, Found, Cand)
{
 for_each(c, $\text{Cand)\{}$
 Filter(System, Rel, iscalled(c))
 Filter(Rel, RelData, islow WMC and islow DIT)
 Compute$_{\text{derived_value}}$(RelData, count, Num)
 if (ishigh\ Num) {
 operation (+, Found, Found, c)
 }
}
• Blob Detection
 – Interaction scenario

Mapping

Graphic representation
 3-D box >> Class
Graphics attributes
 twist >> LCOM5
 height >> DIT
 color >> WMC
• Blob Detection
 – Interaction scenario

Scenario(Blob_detection)
{
 Run_scenario(Controller_class_detect)
 Run_scenario(Data_class_verif)
}

Scenario(Controller_class_detect)
{
 Overview(Class)
 Block(Class){
 Check_if(Color:Red
 and Twist:0 to 45
 and Height: Medium To High)
 Select(Result)
 Tag(CC, Result)
 }
}

Scenario(Data_class_verif)
{
 for_each(c in CC){
 Overview(Class)
 Apply_automatic_filter(Class, iscalled(c))
 Tag(REL, Result)
 Overview(Class)
 Block(REL){
 Check_if(color:blue
 and height:low)
 Select(Result)
 Tag(ConData, Result)
 }
 Overview(ConData)
 Do_function(count, ConData, Num)
 Block{
 Check_if(Num,ishigh)
 Tag(Blob, c)
 }
 }
}
- Blob Detection
• Blob Detection
Increasing Tolerance to Complexity

• Problem
 – In the context of large-scale systems
 • Principles mentioned above reduce data exploration complexity
 • Complexity is still overwhelming
 • Much too difficult for a human analyst
 – How can we increase tolerance to complexity?
Increasing Tolerance to Complexity

• Principles
 – Flow state (Csikszentmihalyi)
 Mental state of operation in which the person is fully immersed in what he or she is doing, characterized by a feeling of energized focus, full involvement, and success in the process of the activity

• Characteristics
 – Clear goals, distorted sense of time, …

• Applications
 – Education, (video) gaming, sport, …
Increasing Tolerance to Complexity

- **Principles**
 - Neurological theory of aesthetic experience (Ramachandran)
 - 10 universal laws of art:
 1. Peak shift
 2. Grouping
 3. Contrast
 4. Isolation
 5. Perception problem solving
 6. Symmetry
 7. Abhorrence of coincidence/generic viewpoint
 8. Repetition, rhythm and orderliness
 9. Balance
 10. Metaphor
Increasing tolerance to complexity

• Peak shift
 – Exaggerated versions of learned objects easier to interpret by the brain
 – Examples
 • Caricatures
 • Women in art
 – Forms
 – Positions
Increasing tolerance to complexity

- **Peak shift**
 - Exaggerated versions of learned objects easier to interpret by the brain
 - Examples
 - Caricatures
 - Women in art
 - Forms
 - Positions
Increasing tolerance to complexity

• Grouping & Perception problem solving
 – Human visual system is trained to detect regularities in a world of noise
 – Discovery of regularities is rewarding (AHA sensation)
 – Example
Increasing tolerance to complexity

- Symmetry & Repetition, rhythm and orderliness
 - Symmetry is attractive
 - Repetition, rhythm and orderliness are soothing
 - Example
 - Islamic art
 - Western painting
Increasing tolerance to complexity

• Symmetry & Repetition, rhythm and orderliness
 – Symmetry is attractive
 – Repetition, rhythm and orderliness are soothing
 – Example
 • Islamic art
 • Western painting
Increasing tolerance to complexity

• **Metaphor**
 - Generates emotional response even before we understand it
 - Examples
 • Indian art
 • Western painting
Increasing tolerance to complexity

• Metaphor
 – Generates emotional response even before we understand it
 – Examples
 • Indian art
 • Western painting
Increasing Tolerance to Complexity

- Implementation example
 - Differences between entities can be visually amplified
 - City metaphor is used
 - Data exploration tasks are modeled as perceptual problem solving
 - Entities are positioned following a particular order
 - Entity groupings are meaningful
 - Each graphical configuration has a single meaning
Conclusion

Interactive Visualization

- Semi-automatic approach
- Maintenance task = Set of reasoning and calculation modules
 - Set of automated modules AMs (explicit knowledge)
 - Human analyst module HM
 - Visualization = Interface between AMs and HM

Modeling Maintenance as Interactive Visualization

- Visualization world

Defining Views

- Representing structure
 - Example of VERSO

Increasing tolerance to complexity

- Grouping & Perception problem solving
 - Human visual system is trained to detect regularities in a world of noise
 - Discovery of regularities is rewarding (AHA sensation)
 - Example