
How to provide proof that software is bug-free?
Verified compilation to the rescue

Sandrine Blazy

GDR GPL, Rennes, 2023-06-07

1

Deductive verification

2

SPECIFICATIONSOFTWARE CORRECT

LOGIC

in

PROOF

in the sense of

MATHEMATICAL
RIGOUR

conducted with

From early intuitions …

A. M. Turing.  
Checking a large routine.1949.

3

… to deductive-verification and automated tools

4

SPECIFICATIONSOFTWARE CORRECT

LANGUAGE

SEMANTICS

PROOF LOGIC

INVARIANTS

INTERPRETER

SOFTWARE
TOOL

MATHEMATICAL
RIGOUR

AUTOMATED INTERACTIVE
FUNCTIONAL
LANGUAGE

PROOF
CERTIFICATE

written in

defined by

e.g.

in the sense ofVERIFIED
SOFTWARE

inincluding

produces
conducted with

either or implemented in

enforces

Floyd 1967, Hoare 1969

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

5

majority = A

cpt_delta = 3

A A A C C B B C C C B C C

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

6

majority = A

cpt_delta = 3

A A A C C B B C C C B C C

A A A C C B B C C C B C C

majority = A

cpt_delta = 1

Part 1: summary

7

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

SEMANTICS

PROOF

INVARIANTS

INTERPRETER

COQ PROOF
ASSISTANT

written in

defined by

e.g.

in the sense ofVERIFIED
COMPILER

including

conducted with
enforces

Part 2:
basics of
verified compilation

8

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

SEMANTICS

PROOF

INVARIANTS

INTERPRETER

COQ PROOF
ASSISTANT

written in

defined by

e.g.

in the sense ofVERIFIED
COMPILER including

conducted with

enforces

Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end
specification:

This specification becomes mathematically precise as soon as we have formal
semantics for the source language and the machine language.

9

The generated code must behave as prescribed
by the semantics of the source program.

An old idea …

Mathematical Aspects of Computer Science, 1967

10

Machine Intelligence (7), 1972

Now taught to Masters students
(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.)

11

type exp = Nb of int | Id of string | Plus of exp * exp

type state = string → int

type instr = Push of int | Read of string | IPlus

let rec exec (e:state)(stack: int list)(pgm: instr list): int list =
 match (pgm, stack) with
 | ([], _) → stack
 | (Push n :: pgm', _) → exec e (n :: stack) pgm'
 | (Read x :: pgm', _) → exec e (e x :: stack) pgm'
 | (IPlus :: pgm', n:: m :: stack') → exec e ((m+n) :: stack') pgm'
 | (_ :: pgm', _) → exec e stack pgm'

let rec eval (e:state)(a:exp): int =
match a with
 | Nb n → n
 | Id x → e x
 | Plus (a1,a2) → (eval e a1)+(eval e a2)

semantics
(eval, exec)

compiler
(compile)

3
6 9

IPlus

n
Push n

4
Read x

e(x)=4

let rec compile (a:exp): instr list = match a with
 | Nb n → [Push n]
 | Id x → [Read x]
 | Plus (a1,a2) → (compile a1)@ (compile a2)@ [IPlus]

com
pilation

Proving a property with the Coq software
ACM SIGPLAN Programming Languages Software award 2013
ACM Software System award 2013 coq.inria.fr

12

Theorem toy-compiler-correct:
 forall e a,
 exec e [] (compile a) = [eval e a].

semantics
(eval, exec)

compiler
(compile)

https://coq.inria.fr/

Proving a property with the Coq software
ACM SIGPLAN Programming Languages Software award 2013
ACM Software System award 2013 coq.inria.fr

13

Theorem toy-compiler-correct:
 forall e a,
 exec e [] (compile a) = [eval e a].
Proof.
 intros;
 … (* not shown here *)
Qed.

semantics
(eval, exec)

compiler
(compile)

extraction

compiler.ml

Extraction compile.

proof  
guided by Coq

https://coq.inria.fr/

Part 3
How to turn CompCert
from a prototype in a lab
into a real-world compiler?

The CompCert formally verified compiler
(X.Leroy, S.Blazy et al.) https://compcert.org

A moderately optimizing C compiler

Targets several architectures (PowerPC, ARM, RISC-V and x86)

Programmed and verified using the Coq proof assistant

Shared infrastructure for ongoing research

Used in commercial settings (for emergency power generators and flight
control navigation algorithms) and for software certification - AbsInt company 
Improved performances of the generated code while providing proven
traceability information

ACM Software System award 2021 
ACM SIGPLAN Programming Languages Software award 2022

15

CompCert compiler: 11 languages, 18 passes

Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

Mach

type elimination

spilling, reloading

calling conventions

stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

linearisation

of the CFG

layout of

stack frames

ASM code

generation

CFG construction

expr. decomp.

Optimisations: constant prop., CSE, tail calls,
(LCM), (software pipelining) 

(instruction scheduling)

16

no side-effect

determinization

CompCertC

ASM

CompCert compiler: 11 languages, 18 passes

C#minor

CminorCminorSelRTL

Linear

MachASM

17

Clight

LTLin

CompCertC

LTL

Semantics

S t S′

S t * S′ S t n S′ S t + S′ S t ∞

Behaviors

termination divergence

going wrong

Reduction semantics

execL P b

Proving semantics preservation:
the simulation approach

Preserved behaviors = termination and divergence

18

Theorem compiler-correct:
 ∀ S C b,
 compiler S = OK C →  
 execCompCertC S b →  
 execASM C b.

« The generated code must
behave as prescribed by the

semantics of the source
program. »

semantics  
(execCompCertC, execASM)

compiler 

Proof technique: simulation diagram

target 
state

source 
state

S1
≈ C1

C2≈S2

+
t1t1

Proving semantics preservation:
the simulation approach

19

with 0 ≤ m(S’) < m(S)

or

S ≈ C

S’

≈
ε

≈ Cn-1Sn-1

t2t2

Cn≈Sn

+
tn-1tn-1

target 
state

source 
state

S1
≈ C1

C2≈S2

+
t1t1

Ingredients

• induction on the execution relation

• invariant between source and target states

•measure m from source states to a well-founded set

≈

Which operational semantics for C-like languages?

Reduction semantics to model diverging executions

20

(if b then i1 else i2); i / s → i1; i / s when eval s b = true

i / s → i’ / s’

(while b do i) / s → i; while b do i / s when eval s b = true

Some rules generate instructions that do not exist in the source program.

Raises two issues when using simulation diagrams:

• impractical to reason on the execution relation

•difficult to define the measure

Continuation-based semantics to the rescue
[Appel, Blazy TPHOL’07]

Continuation: remaining computations and their structure

No generation of new instruction: i’ is always a subterm of i

New kinds of rules for dealing with continuations

Focus (on the left of a sequence)

Resume (the remaining computations)

21

i / k / s → i’ / k’ / s’

(if b then i1 else i2) / k / s → i1 / k / s when eval s b = true

(i1;i2) / k / s → i1 / i2 ● k / s

skip / i ● k / s → i / k / s

Part 3: summary

22

correctness
theorem

behaviors

termination divergence

reduction
semanticsabout

is

observe traces

belong to

emit

reasoning simulation
diagrams

using

continuations

rel
y o

n

is proved by

fac
ilita

te

anti-stuttering
measure

strengthened
w

ith

Part 4
Beyond CompCert

 secure compilation
 just-in-time compilation
 WIP

Turning CompCert into a secure compiler
CT-CompCert [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL’20]

Cryptographic constant-time (CCT) programming discipline

24

unsigned nok-function (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned ok-function (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }

Theorem compiler-preserves-CCT:
 ∀ S C,
 compiler S = OK C →  
 isCCT S →
 isCCT C.

Theorem compiler-correct:
 ∀ S C b,
 compiler S = OK C →  
 execCompCertC S b →  
 execASM C b.

How to turn CompCert into a formally-verified secure compiler?

Which proof technique for the isCCT policy?

25

Difficulty: tricky proofs!

S1
≈ C1

C2≈S2

t’t
S’1 ≈ C’1

C’2≈S’2

t’t
n1

n2

Theorem compiler-preserves-CCT:
 ∀ S C,
 compiler S = OK C →  
 isCCT S →
 isCCT C.

S1
ℓ S2

S′ 1
ℓ′ S′ 2

with φ(S1, S′ 1) implies ℓ = ℓ′

isCCT S

Observational non-interference: observing program leakage (boolean guards and memory
accesses) during execution does not reveal any information about secrets

Indistinguishability property : share public values, but may differ on secret valuesφ(Si, S′ i)

Proving CCT preservation:
back to simulation diagrams

26

must predict the
number of steps

at target level

Proof-engineering: leverage the existing proof scripts as much as possible

t’=t

or (t’ and t is leak only)= ε

S1
≈ C1

C2≈S2

t’t
S’1 ≈ C’1

C’2≈S’2

t’t
n1

n2

S1
≈n C1

C2
≈n’S2

t’t
n

Verifying just-in-time (JIT) compilation [Barrière’s PhD 12/2022]
[Barrière, Blazy, Flückiger, Pichardie, Vitek, POPL’21] and [Barrière, Blazy, Pichardie, POPL’23]

A JIT compiler interleaves the execution of a program with its optimizations

Dynamic speculation: specializes functions, requires deoptimization

 
Non-deterministic semantics: either deoptimize to the source program or
continue to the next instruction in the optimized program

27

IR interpreter native exec.optimization

speculation

backend

monitor

profilerprofiler

source
program

… 
f();  
… 

g();

new
program

interpretation
interpretation

com
pilation
of f()

com
pilation
of g()

dynamic
optim.

dynamic
optim.

Proving semantics preservation:
the simulation approach

28

C4≈S4

JIT
program 

P0

source 
program

P0

S1
≈ C1

C2≈S2

Both the program and the execution
state are evolving

C3≈S3

JIT
program 

P2

JIT
program 

P1

dynamic
optim.

dynamic
optim.

Nested simulations for JIT verification

29

C4≈JIT
S4

JIT
program 

P0

source 
program

P0

S1
≈JIT C1

C2≈JIT
S2

Invariant ≈JIT: at any point during JIT
execution

• the current state Ci corresponds
to a source state Si

• the curent JIT program Pi is
equivalent to the source
program P0

Nested simulation: this equivalence
is expressed with another simulation

C3

≈JIT

S3

JIT
program 

P2

JIT
program 

P1

dynamic
optim.

dynamic
optim.

C2

C3 P2

P0

P0

P1

P1

P2

≈JIT

≈JIT

Both the program and the execution
state are evolving

Work in progress 🏗

30

Clight C#minor Cminor CminorSel RTL

LTLLTLinLinearMach

CompCertC

ASM

Catala

FPGA

SSA

GSA

new
 font-end

new
 back-end

new optimizations

new target

Conclusion and perspectives

CompCert is a shared infrastructure for ongoing research

•compilation : ProbCompCert (Boston College, USA), L2C (Tsinghua, China),
Velus (DIENS, Fr), CompCertO (Yale, USA), VeriCert (Imperial College, GB),
CompCert-KVX (Verimag, Fr)

•program logics: VST (Princeton, USA), Gillian (Imperial College, GB),  
VeriFast (KUL, Be)

•static analysis : Verasco (Inria, Fr)

Opens the way to the trust of development tools

From early intuitions to fundamental formalisms … 
 verification tools that automate these ideas … 
 actual use in the critical software industry

31

Thank you! Questions?

32

