A Data Mining Perspective on Explainable AIOps with Applications to Software Maintenance

 Presented by Youcef REMIL
 Proposed by Infologic R&D
 Advised by Pr. Jean-François BOULICAUT
 Dr. Mehdi KAYTOUE
 Dr. Anes BENDIMERAD

June 04, 2024
A Data Mining Perspective on Explainable AIOps with Applications to Software Maintenance

Introduction and Motivation – CIFRE Thesis

1982 - Infologic foundation

2016 – Infologic R&D Initiated

2019 – Preventive Maintenance Project

2020 – Ph.D Thesis on AIOps

- Significant annual growth
- More than 600 sites
- Over 200K workstations

ERP Software Editor Copilote

- 1982 - Infologic foundation
- 2016 – Infologic R&D Initiated
- 2019 – Preventive Maintenance Project
- 2020 – Ph.D Thesis on AIOps

- Significant annual growth
- More than 600 sites
- Over 200K workstations
Introduction and Motivation – CIFRE Thesis

1982 – Infologic foundation

2016 – Infologic R&D Initiated

2019 – Preventive Maintenance Project

2020 – Ph.D Thesis on AIOps

Collect and storage of telemetry data

- Boosting efficiency/reliability
- Service quality
- Need for automation

A Data Mining Perspective on Explainable AIOps with Applications to Software Maintenance
Introduction and Motivation – CIFRE Thesis

1982 - Infologic foundation

2016 – Infologic R&D Initiated

2019 – Preventive Maintenance Project

2020 – Ph.D Thesis on AIOps

- Data-centric approach
- Real-time monitoring
- Proactive maintenance
- AIOps* and Automation

Introduction and Motivation – CIFRE Thesis

1982 – Infologic foundation

2016 – Infologic R&D Initiated

2019 – Preventive Maintenance Project

2020 – Ph.D Thesis on AIOps

- Study of AIOPS field
- Limitations of AIOps
- Development of effective AIOps solutions
- Applicative and Research Contributions

Introduction and Motivation

- **Real pain points of maintenance routines at Infologic**
 - Lack of standardized and automated maintenance routines with higher costs
 - Relying mostly on corrective maintenance
 - Example: A detectable memory leak at a customer’s premises (with +€450m annual revenue) blocked the departure of all delivery trucks from a factory for 30 minutes.
Introduction and Motivation

- Real pain points of maintenance routines at Infologic
 - Lack of standardized and automated maintenance routines with higher costs
 - Higher human and resource costs [statistics by the end of 2019]

<table>
<thead>
<tr>
<th>Code</th>
<th>Libellé</th>
<th>07/19-2000-00:00</th>
<th>07/19-2000-00:00</th>
<th>07/19-2000-00:00</th>
<th>07/19-2000-00:00</th>
<th>07/19-2000-00:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>448719</td>
<td></td>
<td>3h 41m 3s 59h</td>
<td>3h 41m 3s 59h</td>
<td>1h 37m 29s</td>
<td>1h 37m 29s</td>
<td>0.62</td>
</tr>
<tr>
<td>504120</td>
<td></td>
<td>1h 23m 43s</td>
<td>1h 23m 43s</td>
<td>1h 23m 43s</td>
<td>1h 23m 43s</td>
<td>0.74</td>
</tr>
<tr>
<td>100249</td>
<td></td>
<td>1h 34m 1s</td>
<td>1h 34m 1s</td>
<td>1h 34m 1s</td>
<td>1h 34m 1s</td>
<td>0.64</td>
</tr>
<tr>
<td>330110</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>091225</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>091790</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>454270</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>001000</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>840130</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>330557</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>554020</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>724249</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>040334</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>542802</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>200179</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
<tr>
<td>2347301</td>
<td></td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>1h 32m 9s</td>
<td>0.59</td>
</tr>
</tbody>
</table>

- ~5600 days
- ~28 pers
- ~14 %

Maintenance time
Full-time employees
Workforce Percentage
Introduction and Motivation

Real pain points of maintenance routines at Infologic

- **Inefficient incident triage and classification**
 - Need for automatic assigning, ranking and classification
 - Problem of tossing sequence*
 - Presence of recurring similar issues in historical maintenance calls

- **Ineffective root cause analysis and incident correlation**
 - Need for deep fault localization and figure out dependencies among components and services

Xie et al., Bug Triaging Based on Tossing Sequence Modeling. In Journal of Computer Science and Technology 2019
Introduction and Motivation

Capabilities of AI for Operating Systems (AIOps)

- **Prevention**
 - Forecast high-severity outages, future events, alerting signals, assessing system health

- **Detection**
 - Detect abnormal conditions, automated pattern discovery, noise reduction in data

- **Location**
 - Root cause analysis, recurrent issues identification, unified topology and contextualization

- **Perception**
 - Data collection and ingestion, data storage, real-time monitoring, querying data

- **Interaction**
 - Human-computer intelligent interaction, interactive analysis and collaboration

- **Action**
 - Reactive triage and routing, prioritization of incidents, set of remediation actions

† Remil et al. AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review, In TOSEM 2023 [Under Submission]
* Dang et al. AIOps: real-world challenges and research innovations. In ICSE 2019
Introduction and Motivation

- Research challenges of AIOps addressed in this thesis
Introduction and Motivation

- Research challenges of AIOps addressed in this thesis

Novel and Unstructured Field

AIOps lacks unified terminology, complete taxonomy, desiderata, technical details
Introduction and Motivation

- Research challenges of AIOps addressed in this thesis

Novel and Unstructured Field
- AIOps lacks unified terminology, complete taxonomy, desiderata, technical details

Data Requirements
- Noisy, unstructured, missing, unlabeled, non-homogeneous and complex data
Introduction and Motivation

- Research challenges of AIOps addressed in this thesis

Novel and Unstructured Field
- AIOps lacks unified terminology, complete taxonomy, desiderata, technical details

Model Design
- Impractical supervised methods, overlooking descriptive models

Data Requirements
- Noisy, unstructured, missing, unlabeled, non-homogeneous and complex data
Introduction and Motivation

Research challenges of AIOps addressed in this thesis

1. Novel and Unstructured Field
 - AIOps lacks unified terminology, complete taxonomy, desiderata, technical details

2. Data Requirements
 - Noisy, unstructured, missing, unlabeled, non-homogeneous and complex data

3. Model Design
 - Impractical supervised methods, overlooking descriptive models

4. Interpretability
 - Best models are black box, transparency is preferred over performance
Introduction and Motivation

Research challenges of AIOps addressed in this thesis

1. Novel and Unstructured Field
 - AIOps lacks unified terminology, complete taxonomy, desiderata, technical details

2. Data Requirements
 - Noisy, unstructured, missing, unlabeled, non-homogeneous and complex data

3. Model Design
 - Impractical supervised methods, overlooking descriptive models

4. Interpretability
 - Best models are black box, transparency is preferred over performance

5. Scalability and Robustness
 - Scalability assessment often overlooked, temporal and in-context evaluation
Introduction and Motivation

- Contributions and Key Research Areas

Software Eng.

Data Mining
Introduction and Motivation

- Contributions and Key Research Areas

 AI for Operating Systems

 Study Comprehensively AIOps research and technical area to address challenge 1

- Software Eng.

- Data Mining

Remil et al. AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review. In TOSEM 2023 [Under revision, Core 2021, A*]

Bendimerad, Remil et al. On-premise Infrastructure for AIOps in a Software Editor SME: An Experience Report, In ESEC/FSE 2023 [Published, Core 2021, A*]
Introduction and Motivation

Contributions and Key Research Areas

- **AI for Operating Systems**
 - Study Comprehensively AIOps research and technical area to address challenge 1

- **Supervised Rule Discovery**
 - Study SD and EMM to address challenges 2 and 3 related to data quality and models

Software Eng.

Data Mining

Remil et al. What makes my queries slow: Subgroup Discovery for SQL Workload Analysis. In *ASE 2021 [Published, Core 2021, A]*
Remil et al. Interpretable Summaries of Black Box Incident Triaging with Subgroup Discovery, In *DSAA 2021 [Published, Core 2021, A]*
Remil et al. Mining Java Memory Errors using Subjective Interesting Subgroups with Hierarchical Targets, In *ICDMW 2023 [Published, Workshop]*
Introduction and Motivation

Contributions and Key Research Areas

1. **AI for Operating Systems**
 - Study Comprehensively AIOps research and technical area to address challenge 1

2. **Supervised Rule Discovery**
 - Study SD and EMM to address challenges 2 and 3 related to data quality and models

3. **Explainable AI**
 - Study Explainable AI to cope with challenge 4 of interpreting black box models

Remil et al. Interpretable Summaries of Black Box Incident Triaging with Subgroup Discovery, In *DSAA 2021* [Published, Core 2021, A]
Remil et al. Découverte de Sous-groupes Interprétables pour le Triage d’Incidents, In *EGC 2022* [Published, National Conf]
Introduction and Motivation

Contributions and Key Research Areas

- **AI for Operating Systems**
 - Study Comprehensively AIOps research and technical area to address challenge 1

- **Locality Sensitive Hashing**
 - Study LSH for fast and efficient similarity search to tackle challenge 5

- **Supervised Rule Discovery**
 - Study SD and EMM to address challenges 2 and 3 related to data quality and models

- **Explainable AI**
 - Study Explainable AI to cope with challenge 4 of interpreting black box models

A Data Mining Perspective on Explainable AIOps with Applications to Software Maintenance
Subgroup Discovery for SQL Workloads

Huge SQL Workload

- SQL queries
- Execution time
- # rows
- History sessions ...

Database schema

- Query execution plan...

DBAs

Performance analysis

- Slow queries
- Index recommendation
- Concurrency issues
- ...

Database server

A Data Mining Perspective on Explainable AIOps with Applications to Software Maintenance
Subgroup Discovery for SQL Workloads

Need for a generic framework to analyse batches of SQL queries and bring answers to the question: How to characterize SQL queries that foster some properties of interest?
Need for a **generic** framework to analyse **batches** of SQL queries and bring answers to the question: **How to characterize SQL queries that foster some properties of interest?**

Illustrative example of SQL queries

<table>
<thead>
<tr>
<th>Predicates</th>
<th>Topology</th>
<th>...</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>ik</td>
<td>date</td>
<td>...</td>
<td>time</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>V2</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>V1</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>V2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>V2</td>
<td>25</td>
</tr>
</tbody>
</table>

Pattern P: Predicate = \(\text{verrou.date} \land \text{Db. Version} = \text{V2} \) → slow queries

*Atzmueller. Subgroup Discovery, in DAMI 2015
Wrobel. An algorithm for multi-relational discovery of subgroups. In PKDD 1997*
Subgroup Discovery building blocks

- Dataset \mathcal{D}
- Property of interest
- Target \mathcal{T}
- Langage Pattern \mathcal{L}
- Enumerated subgroups
- Enumeration Algorithm
 - Exhaustive, heuristic, by sampling, etc.
- Selectors
- Top k subgroups
- Objective, subjective, semantic-based, constraints, etc.
- Interestingness Q
- Symbol sets, numerical intervals, subgraphs, subsequences, etc.
- Numerical, binary, multiple complex attributes, etc.
Subgroup Discovery for SQL Workloads

SD building blocks for SQL Workload Analysis

Example of an SQL query

```
SELECT m.ik
FROM model AS m
JOIN prod AS p
WHERE m.ik = p.ik
  AND m.uex = p1
  AND (m.uex in collection0
       OR m.ik in collection1)
  AND (m.dossier = p3
GROUP BY m.ik
HAVING (COUNT(DISTINCT p.ik) = p2)
  AND (SUM(m.nbembal) = MAX (p.nbembal))
```

Our parser*

```
SELECT_model_ik 1
FROM_model 1
JOIN_prod 1
WHERE_model_ik 2
WHERE_model.uex 1
WHERE_model.dossier 1
WHERE_prod.ik 1
GROUPBY_ik 1
HAVING_prod_ik 1
HAVING_model.nbembal 1
HAVING_prod.nbembal 1
COUNT_prod.ik 1
SUM_model.nbembal 1
MAX_prod.nbembal 1
```

*https://github.com/klahnakoski/mo-sql-parsing/pull/26
Subgroup Discovery for SQL Workloads

SD building blocks for SQL Workload Analysis

SQL queries
Parsing
Relevant data

Dataset \(\mathcal{D} \)

Selectors

Langage Pattern \(\mathcal{L} \)

Symbol sets, numerical intervals,

Property of interest

DB version

DB version

Blocked sessions

\(V2 \)
\(V3 \)

\(5 \ 10 \ 15 \ 20 \ 25 \)

\(sel_{1} \land sel_{2} \land \ldots \land sel_{d} \)

\(sel_{1} \rightarrow sel_{2} \rightarrow \ldots \rightarrow sel_{d} \)

\(sel_{1} \land sel_{2} \land \ldots \land sel_{d} \)

\(sel_{i} \land sel_{i+1} \land \ldots \land sel_{d} \)

\(\cup \)

Search Space \(\mathcal{L} \)

Made of

Selectors

Conjunctive combinations

Patterns

- \(sg(P) = ext(P) = \{ c \in \mathcal{O} | P(o) = True \} \)
- \(P_{gen} \subseteq P_{spec} \Rightarrow sg(P_{gen}) \supseteq sg(P_{spec}) \)

\(P_{gen} : blockedSessions \in [15, 25] \)
\(P_{spec} : blockedSessions \in [15, 25] \land dbVersion = V3 \)
Subgroup Discovery for SQL Workloads

SD building blocks for SQL Workload Analysis

- SQL queries → Parsing → Dataset \mathcal{D} → Property of interest (numerical attributes, e.g., runtime) → Target T → Interestingness Q

Objective measures:
- Exceptionality
- Generality

Numerical measures used to evaluate the subgroup patterns:

1. **Mean-based Measure** (sensible to outliers)
 \[
 q_{\text{mean}}^\alpha = i_p^\alpha \cdot (\mu_p - \mu_\emptyset)
 \]

2. **Median-based Measure** (sensible to outliers)
 \[
 q_{\text{med}}^\alpha = i_p^\alpha \cdot |\text{Med}_p - \text{Med}_\emptyset|
 \]

3. **T-Score Measure** (optimize the dispersion)
 \[
 T_{\text{score}} = i_p^{\frac{1}{2}} \cdot \frac{(\mu_p - \mu_\emptyset)}{\sigma_p}
 \]

*Langage Pattern \mathcal{L}

Subgroup Discovery for SQL Workloads

SD building blocks for SQL Workload Analysis

SQL queries
Parsing

Dataset \mathcal{D}

Target T

Interestingness Q

Property of interest
numeric and binary, attributes

Selector

Language Pattern \mathcal{L}

Evaluate subgroups

Enumeration Algorithm

Enumerate subgroups

Depth first search
Beam search

Refine

Pruning

Empty pattern

Search Space

Max support

Objective measures:
Exceptionality
Generality

Lemmerich et al. Fast exhaustive subgroup discovery with numerical target concepts. In DAMI 2016
Subgroup Discovery for SQL Workloads

Results on a large workload of Hibernate queries made available by Infologic

<table>
<thead>
<tr>
<th>ID</th>
<th>Target</th>
<th>Measure</th>
<th>Subgroup patterns</th>
<th>Size</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>time</td>
<td>Median</td>
<td>(P_1): WHERE stocks.gestion.modele.lot.prod.ref.auditinfo.etat \geq 1 (P_2): FROM ventes.cumuls.modele.cummulmultiple \geq 1 (P_3): WHERE ventes.cumuls.modele.cummulmultimate.valzvcl1X \geq 1 (P_4): WHERE ventes.cumuls.modele.cummulmultimate.valzvartX \geq 1</td>
<td>8</td>
<td>(161 \cdot q\text{med}(P_2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(P_5): serverName = ServerX \land system/0 \geq 50</td>
<td>45</td>
<td>21 \cdot q\text{med}(P_2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lift</td>
<td>(P_6): GROUPBY stocks.gestion.modele.mvreallise.refexterne \geq 1</td>
<td>131</td>
<td>(\tau_P \approx 0.99)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(P_7): serverName = ServerX \land system/0 \geq 50</td>
<td>38</td>
<td>(\tau_P \approx 0.99)</td>
</tr>
<tr>
<td>D2</td>
<td>slow (\tau_P \approx 0.6)</td>
<td>Lift</td>
<td>(P_8): WHERE stocks.gestion.modele.mvreallise.etatsynchro \geq 1 \land jdbcMax < 200</td>
<td>20668</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(P_9): WHERE stocks.gestion.modele.mvreallise.auditinfo.datcre \geq 1 \land dbVersion = 2.3</td>
<td>20675</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(P_10): manyActiveSessions = Alarm</td>
<td>44</td>
<td>0.93%</td>
</tr>
</tbody>
</table>
Enhancing Duplicate Crash Report Retrieval

Problem of deduplication*

A bug reported for the ACTI service

But the bug is generic and related to a web feature

*Jiang et al. Igor: Crash Deduplication Through Root-Cause Clustering, In CCS 2021
Enhancing Duplicate Crash Report Retrieval

Similarity measures for stack trace comparison embedded in **Clustering** algorithms

- **Complex** similarity measures based
- **Computational** Complexity is very **costly**
- Measures embedded in **clustering** with several **issues**
- It should be handled as **Nearest Neighbours Search** problem

[Dang et al., in ICSE 2012]*

*Dang et al. ReBucket: A Method for Clustering Duplicate Crash Reports Based on Call Stack Similarity. In ICSE 2012
†Wu et al. CrashLocator: Locating Crashing Faults Based on Crash Stacks. In ISSTA 2013
ǂMoroo et al. Reranking-based Crash Report Deduplication. SEKE 2017

A Data Mining Perspective on Explainable AIOps with Applications to Software Maintenance
Enhancing Duplicate Crash Report Retrieval

Contribution

Learn a family of hash functions with a constrained hashing Siamese neural network.

A Data Mining Perspective on Explainable AIOps with Applications to Software Maintenance
Enhancing Duplicate Crash Report Retrieval

Experiments

Does the model manage to converge to the LSH property?

![Diagram showing the model's convergence to the LSH property for various similarity measures.](image)
Enhancing Duplicate Crash Report Retrieval

Experiments

Is the model fast enough compared to linear scans?

<table>
<thead>
<tr>
<th>Similarity Measure</th>
<th>k-NN</th>
<th>CNNH+LSH</th>
<th>DeepLSH</th>
<th>MinHash</th>
<th>SimHash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaccard</td>
<td>258</td>
<td>30</td>
<td>26</td>
<td>57</td>
<td>-</td>
</tr>
<tr>
<td>Cosine</td>
<td>8288</td>
<td>15</td>
<td>14</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>TF-IDF</td>
<td>8510</td>
<td>16</td>
<td>15</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Edit Distance</td>
<td>4911</td>
<td>29</td>
<td>29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PDM</td>
<td>10047</td>
<td>16</td>
<td>16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brodie</td>
<td>Limit</td>
<td>27</td>
<td>27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DURFEX</td>
<td>12160</td>
<td>26</td>
<td>24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lerch</td>
<td>3118</td>
<td>24</td>
<td>24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Moroo</td>
<td>15253</td>
<td>25</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TraceSim</td>
<td>13050</td>
<td>30</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
End

Thanks for your attention
End

Q/A?