

Prix de Thèse GDR GPL 2024

A Data Mining Perspective on Explainable AIOps with Applications to Software Maintenance

Presented by Youcef REMIL

Proposed by Infologic R&D

Advised by Pr. Jean-François BOULICAUT Dr. Mehdi KAYTOUE Dr. Anes BENDIMERAD

*AIOps: AI for Operating Systems [Pankaj Prasad and Charley Rich. Market guide for AIOps platforms]

*AIOps: AI for Operating Systems [Pankaj Prasad and Charley Rich. Market guide for AIOps platforms]

Real pain points of maintenance routines at Infologic

Lack of standardized and automated maintenance routines with higher costs

Relying mostly on corrective maintenance

 Example: A detectable memory leak at a customer's premises (with +€450m annual revenue) blocked the departure of all delivery trucks from a factory for 30 minutes.

Real pain points of maintenance routines at Infologic

Lack of standardized and automated maintenance routines with higher costs

Higher human and resource costs [statistics by the end of 2019]

Code	Libellé	01/01/19 00:00 - 31/12/19 00:00 01/			01/01/200	00.00-31/12/20 00.00			
code	Libelle	Durée 🔫	Durée moy.	Prod. horaire	Durée	Durée moy.	Prod. hora	~5600	Maintenance
> 448719		367j 4h 47m	1h 37m 29s	0.62	361j 5h 19m	1h 58m 49s	0.		
> 604120		166j 5h 18m	1h 20m 43s	0.74	106j 7h 46m	1h 19m 51s	0.	days	time
> 160249		119j 7h 1m	1h 34m 1s	0.64	237j 48m 1s	1h 50m 10s	0.		
> 280110		116j 6h 53m	57m 10s	1.05	98j 1h 9m	1h 3m 29s	0.		
> 091225		108j 7h 43m	1h 42m 9s	0.59	57j 5h 28m	1h 27m 20s	0.		
> 091790		100j 2h 11m	1h 35m 52s	0.63	77j 7h 46m 1s	1h 34m 30s	0.		Full-time
> 484270		94j 7h 54m	1h 37s	0.99	81j 4h 56m	1h 7m 32s	0.		
> 091730		93j 7h 22m	1h 32m 34s	0.65	40j 1h 27m	1h 35m	0.	~28	
> 800000		93j 7h 19m	56m 33s	1.06	75j 25m	56m 22s	1.	20	
> 091780		84j 44m	58m 19s	1.03	78j 18m	1h 7m 44s	0.	pers	employees
> 840130		80j 6h 48m	53m 22s	1.12	77j 5h 15m	56m 13s	1.		
> 320557		78j 1h 36m	1h 18m 51s	0.76	103j 1h 23m 1s	1h 16m 39s	0.		
> 554020		71j 3h 11m	58m 5s	1.03	31j 7h 51m	55m 13s	1.		
> 724299		68j 3h 41m	1h 10m 49s	0.85	57j 6h 5m	1h 12m 57s	0.		
> 040340		64j 3h 59m	1h 21m 54s	0.73	34j 3h 49m	1h 17m 19s	0.		
> 440500		44j 6h 39m	1h 1m 8s	0.98	44j 3h 49m	54m 27s	1.		
> 200440		44j 5h 39m	1h 11m 46s	0.84	41j 5h 39m	1h 18m 11s	0.	~14 %	Workforce
> 247301		44i 2h 51m	1h 42m 51s	0.58	32i 3h 38m	1h 16m 21s	0.		Percentage
Total		5592j 5h 41m	1h 2m 48s	0.9	5739j 5h 56m 9s	1h 7m 44s	0.		

Real pain points of maintenance routines at Infologic

Inefficient incident triage and classification

- Need for automatic assigning, ranking and classification
- Problem of tossing sequence*
- Presence of recurring similar issues in historical maintenance calls

Ineffective root cause analysis and incident correlation

Need for deep fault localization and figure out dependencies among components and services

Xie et al., Bug Triaging Based on Tossing Sequence Modeling. In Journal of Computer Science and Technology 2019

Capabilities of AI for Operating Systems (AIOps)⁺

Data collection and ingestion, Data storage, Real-time monitoring, Querying data

Human-computer intelligent interaction, Interactive analysis and collaboration

Reactive Triage and routing, Prioritization of incidents. Set of Remediation actions

Remil et al. AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review, In TOSEM 2023 [Under Submission] *Dang et al. AIOps: real-world challenges and research innovations. In ICSE 2019

□ Research challenges of AlOps addressed in this thesis

□ Research challenges of AlOps addressed in this thesis

Novel and Unstructured Field

AlOps lacks unified terminology, complete taxonomy, desiderata, technical details

□ Research challenges of AlOps addressed in this thesis

Novel and Unstructured Field

AlOps lacks unified terminology, complete taxonomy, desiderata, technical details

Data Requirements

Noisy, unstructured, missing, unlabeled, non-homogeneous and complex data

□ Research challenges of AlOps addressed in this thesis

Novel and Unstructured Field

AlOps lacks unified terminology, complete taxonomy, desiderata, technical details

Model Design

Impractical supervised methods, overlooking descriptive models

Data Requirements

Noisy, unstructured, missing, unlabeled, non-homogeneous and complex data

□ Research challenges of AlOps addressed in this thesis

□ Research challenges of AlOps addressed in this thesis

Contributions and Key Research Areas

Software Eng.

Data Mining

Contributions and Key Research Areas

17

Remil et al. AlOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review, In **TOSEM 2023 [Under revision, Core 2021, A*]** Bendimerad, **Remil** et al. On-premise Infrastructure for AlOps in a Software Editor SME: An Experience Report, In **ESEC/FSE 2023 [Published**, **Core 2021, A*]**

Contributions and Key Research Areas

Remil et al. What makes my queries slow: Subgroup Discovery for SQL Workload Analysis, In ASE 2021 [Published, Core 2021, A*] Remil et al. Interpretable Summaries of Black Box Incident Triaging with Subgroup Discovery, In DSAA 2021 [Published, Core 2021, A] Remil et al. Mining Java Memory Errors using Subjective Interesting Subgroups with Hierarchical Targets, In ICDMW 2023 [Published, Workshop]

Contributions and Key Research Areas

Remil et al. Interpretable Summaries of Black Box Incident Triaging with Subgroup Discovery, In **DSAA 2021 [Published, Core 2021, A] Remil** et al. Découverte de Sous-groupes Interprétables pour le Triage d'incidents, In **EGC 2022 [Published, National Conf]**

Contributions and Key Research Areas

Remil et al. DeepLSH: Deep Locality-Sensitive Hash Learning for Fast and Efficient Near-Duplicate Crash Report Detection, In ICSE 2024 [Published, Core 2021 A*]

Performance analysis

Need for a **generic** framework to analyse **batches** of SQL queries and bring answers to the question: **How to characterize SQL queries that foster some properties of interest?**

Need for a **generic** framework to analyse **batches** of SQL queries and bring answers to the question: **How to characterize SQL queries that foster some properties of interest?**

Illustrative example of SQL queries

Pattern *P*: Predicate = verrou.date \land Db. Version = V2 \rightarrow slow queries

Predicates		Topology		•••	Targets		
ik	date	Db. version	•••		time	slow	
1	1	V2			14	1	
0	1	V1		•••	2	0	
•••		•••		•••	•••		
1	0	V2		•••	3	0	
0	1	V2			25	1	

Atzmueller. Subgroup Discovery, In DAMI 2015

Wrobel. An algorithm for multi-relational discovery of subgroups. In PKDD 1997

Subgroup Discovery building blocks

SD building blocks for SQL Workload Analysis

*https://github.com/klahnakoski/mo-sql-parsing/pull/26

27

28

Results on a large workload of Hibernate queries made available by Infologic

ID	Target	Measure	Subgroup patterns	Size	Quality
D1	time	Median	$\begin{array}{l} (P_1): \texttt{WHERE_stocks.gestion.modele.lot.prod.ref.auditinfo.etat} \geqslant 1 \\ (P_2): \texttt{FROM_ventes.cumuls.modele.cumulmultiple} \geqslant 1 \\ (P_3): \texttt{WHERE_ventes.cumuls.modele.cumulmultiple.valzvcli} X \geqslant 1 \\ (P_4): \texttt{WHERE_ventes.cumuls.modele.cumulmultiple.valzvart} X \geqslant 1 \end{array}$		$\begin{array}{c} 161 \cdot \mathbf{q}_\texttt{med}(P_{\varnothing}) \\ 21 \cdot \mathbf{q}_\texttt{med}(P_{\varnothing}) \\ 21 \cdot \mathbf{q}_\texttt{med}(P_{\varnothing}) \\ 21 \cdot \mathbf{q}_\texttt{med}(P_{\varnothing}) \end{array}$
D2	slow $ au_{P_{oldsymbol{arphi}}}\simeq 0.6$	Lift	(P_5) : GROUPBY_stocks.gestion.modele.mvtrealise.refexterne ≥ 1 (P_6) : serverName = ServerX \land systemI/O > 50	$\begin{array}{c}131\\38\end{array}$	$\tau_P = 1$ $\tau_P = 1$
	$T_{\emptyset} = 0.0$	WRAcc	$\begin{array}{l} (P_7): \texttt{WHERE_stocks.gestion.modele.mvtrealise.etatsynchro} \geq 1 \land \texttt{jdbcMax} < 200 \\ (P_8): \texttt{WHERE_stocks.gestion.modele.mvtrealise.auditinfo.datcre} \geq 1 \land \texttt{dbVersion} = 2.3 \\ (P_9): \texttt{manyActiveSessions} = \texttt{Alarm} \end{array}$	$\begin{array}{ c c c c } 20668 \\ 20675 \\ 44 \end{array}$	$\tau_P \simeq 0.99$ $\tau_P \simeq 0.99$ $\tau_P \simeq 93\%$

Near-

duplicates

Problem of deduplication*

A bug reported for the ACTI service

× Erreur

Une erreur est arrivée durant l'exécution de l'application :

Cannot invoke "fr.infologic.acti.modele.TypCompteRendu.getFormulaire()" because "typCR" is null

java.lang.NullPointerException: Cannot invoke "fr.infologic.acti.modele.TypCompteRendu at fr.infologic.acti.services.activite.cr.impl.CompteRenduWebServiceImpl.loadTypCom at fr.infologic.acti.services.activite.cr.impl.CompteRenduWebServiceImpl\$\$EnhancerBy at fr.infologic.acti.services.activite.cr.impl.CompteRenduWebServiceImpl\$\$EnhancerBy at net.sf.cglib.proxy.MethodProxy.invokeSuper(MethodProxy.java:167) at fr.infologic.core.server.persistence.CGLIBPersistenceHandler.intercept(CGLIBPers: at fr.infologic.acti.services.activite.cr.impl.CompteRenduWebServiceImpl\$\$EnhancerB at fr.infologic.acti.services.activite.cr.impl.CompteRenduWebServiceImpl.loadTypCom at fr.infologic.acti.services.activite.cr.impl.CompteRenduWebServiceImpl\$\$EnhancerB at fr.infologic.acti.services.activite.cr.impl.CompteRenduWebServiceImpl\$\$EnhancerB at net.sf.cqlib.proxy.MethodProxy.invokeSuper(MethodProxy.java:167) at fr.infologic.core.server.persistence.CGLIBPersistenceHandler.executeWithSessionOF at fr.infologic.core.server.persistence.CGLIBPersistenceHandler.intercept(CGLIBPers at fr.infologic.acti.services.activite.cr.impl.CompteRenduWebServiceImpl\$\$EnhancerB at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccess at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMeth at java.base/java.lang.reflect.Method.invoke(Method.java:568)

at fr.infologic.core.server.jsonrpc.JSONService\$MethodService.invoke(JSONService.ja -

But the bug is generic and related to a **web** feature

à 11:50

: à marquer comme traiter puisque tu as fait une correction spécifique ici, on analysera le cas général dans <u>WEBBUG-6883</u>.

× Erreur

Une erreur est arrivée durant l'exécution de l'application : Format de clé incorrect pour la table fr.infologic.crm.acti.modele.Chantier

fr.infologic.core.exceptions.InfologicRuntimeException: Format de clé incorrect pour la at fr.infologic.outils.persistance.PersistanceUtils.getEK(PersistanceUtils.java:1685) at fr.infologic.outils.persistance.PersistanceUtils.getEK(PersistanceUtils.java:1661) at fr.infologic.core.services.fichierbase.web.edit.EditUtil.getKey(EditUtil.java:37) at fr.infologic.core.services.fichierbase.web.impl.InputFormsWebServiceImpl.loadByKey at fr.infologic.core.services.fichierbase.web.impl.InputFormsWebServiceImpl\$\$Enhancer at fr.infologic.core.services.fichierbase.web.impl.InputFormsWebServiceImpl\$\$Enhancer at net.sf.cglib.proxy.MethodProxy.invokeSuper(MethodProxy.java:167) at fr.infologic.core.server.persistence.CGLIBPersistenceHandler.executeWithSessionOn1 at fr.infologic.core.server.persistence.CGLIBPersistenceHandler.intercept(CGLIBPersis at fr.infologic.core.services.fichierbase.web.impl.InputFormsWebServiceImpl\$\$Enhancer at jdk.internal.reflect.GeneratedMethodAccessor3069.invoke(Unknown Source) at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethc at java.base/java.lang.reflect.Method.invoke(Method.java:568) at fr.infologic.core.server.jsonrpc.JSONService\$MethodService.invoke(JSONService.java at fr.infologic.core.server.jsonrpc.JSONInvocation.invokeService(JSONInvocation.java: at fr.infologic.core.server.jsonrpc.JSONInvocation.invoke(JSONInvocation.java:182)

Détail Copier Soumettre

*Jiang et al. Igor: Crash Deduplication Through Root-Cause Clustering, In CCS 2021

Similarity measures for stack trace comparison embedded in Clustering algorithms

[Dang et al., in ICSE 2012]*

*Dang et al. ReBucket: A Method for Clustering Duplicate Crash Reports Based on Call Stack Similarity. In ICSE 2012 †Wu et al. CrashLocator: Locating Crashing Faults Based on Crash Stacks. In ISSTA 2013 ‡Moroo et al. Reranking-based Crash Report Deduplication. SEKE 2017

Contribution

n

•••• Experiments

Does the model manage to converge to the LSH property?

•••• Experiments

Is the model fast enough compared to linear scans?

Similarity Measure					
Similarity modelare	k-NN	CNNH+LSH	DeepLSH	MinHash	SimHash
Jaccard	258	30	26	57	-
Cosine	8288	15	14	-	3
TF-IDF	8510	16	15	-	4
Edit Distance	4911	29	29	-	-
PDM	10047	16	16	-	-
Brodie	Limit	27	27	-	-
DURFEX	12160	26	24	-	-
Lerch	3118	24	24	-	-
Moroo	15253	25	25	-	-
TraceSim	13050	30	30	-	-

Thanks for your attention

End

