
The How and Why of Higher-Order SMT

for Prospective Users

Sophie Tourret

Journées Nationales du GDR GPL & AFADL

June 2024

SMT in Formal Methods

Z3, Alt-Ergo, cvc5, ...

SMT is Well-known as a backend for many techniques, including:

• program verification (Boogie, F∗, Viper, Why3, Frama-C, Atelier-B...)

• symbolic execution (KLEE, S2E, Triton)

• interactive proof assistants (Isabelle/HOL, Coq, HOL)

1

SMT in Formal Methods

Z3, Alt-Ergo, cvc5, ...

SMT is Well-known as a backend for many techniques, including:

• program verification (Boogie, F∗, Viper, Why3, Frama-C, Atelier-B...)

• symbolic execution (KLEE, S2E, Triton)

• interactive proof assistants (Isabelle/HOL, Coq, HOL)

1

SMT in Formal Methods

Z3, Alt-Ergo, cvc5, ...

SMT is Well-known as a backend for many techniques, including:

• program verification (Boogie, F∗, Viper, Why3, Frama-C, Atelier-B...)

• symbolic execution (KLEE, S2E, Triton)

• interactive proof assistants (Isabelle/HOL, Coq, HOL)

1

SMT in Formal Methods

Z3, Alt-Ergo, cvc5, ...

SMT is Well-known as a backend for many techniques, including:

• program verification (Boogie, F∗, Viper, Why3, Frama-C, Atelier-B...)

• symbolic execution (KLEE, S2E, Triton)

• interactive proof assistants (Isabelle/HOL, Coq, HOL)

1

SMT in Formal Methods

Z3, Alt-Ergo, cvc5, ...

SMT is Well-known as a backend for many techniques, including:

• program verification (Boogie, F∗, Viper, Why3, Frama-C, Atelier-B...)

• symbolic execution (KLEE, S2E, Triton)

• interactive proof assistants (Isabelle/HOL, Coq, HOL)

1

Standard SMT Solving

The Bases (1/2)

SMT stands for Satisfiability Modulo Theories

An SMT solver determins the truth value of a formula.

A formula is . . .

valid when always true,

satisfiable when true at least once,

unsatisfiable when never true.

2

The Bases (1/2)

SMT stands for Satisfiability Modulo Theories

An SMT solver determins the truth value of a formula.

A formula is . . .

valid when always true,

satisfiable when true at least once,

unsatisfiable when never true.

2

The Bases (1/2)

SMT stands for Satisfiability Modulo Theories

An SMT solver determins the truth value of a formula.

A formula is . . .

valid when always true,

satisfiable when true at least once,

unsatisfiable when never true.

2

The Bases (1/2)

SMT stands for Satisfiability Modulo Theories

An SMT solver determins the truth value of a formula.

A formula is . . .

valid when always true,

satisfiable when true at least once,

unsatisfiable when never true.

2

The Bases (1/2)

SMT stands for Satisfiability Modulo Theories

An SMT solver determins the truth value of a formula.

A formula is . . .

valid when always true,

satisfiable when true at least once,

unsatisfiable when never true.

2

The Bases (2/2)

SMT solvers usually operate in first-order logic

• formula φ, ψ: built from ¬,∧,∨,⇒,⇔, . . . and quantifiers

• quantifiers ∀,∃: ∀x .φ, ∃y .ψ
• bound variables: ∀x , y .P(f (x), y) ∨ Q(y)

+ interpreted symbols in given theories

• +, ×, ≤, =, . . .

Example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]

3

The Bases (2/2)

SMT solvers usually operate in first-order logic

• formula φ, ψ: built from ¬,∧,∨,⇒,⇔, . . . and quantifiers

• quantifiers ∀,∃: ∀x .φ, ∃y .ψ
• bound variables: ∀x , y .P(f (x), y) ∨ Q(y)

+ interpreted symbols in given theories

• +, ×, ≤, =, . . .

Example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]

3

The Bases (2/2)

SMT solvers usually operate in first-order logic

• formula φ, ψ: built from ¬,∧,∨,⇒,⇔, . . . and quantifiers

• quantifiers ∀,∃: ∀x .φ, ∃y .ψ
• bound variables: ∀x , y .P(f (x), y) ∨ Q(y)

+ interpreted symbols in given theories

• +, ×, ≤, =, . . .

Example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]

3

The Bases (2/2)

SMT solvers usually operate in first-order logic

• formula φ, ψ: built from ¬,∧,∨,⇒,⇔, . . . and quantifiers

• quantifiers ∀,∃: ∀x .φ, ∃y .ψ
• bound variables: ∀x , y .P(f (x), y) ∨ Q(y)

+ interpreted symbols in given theories

• +, ×, ≤, =, . . .

Example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
3

Inside an SMT solver

SMT formula

SMT solver

4

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]

encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)

5

Inside an SMT solver

SMT formula

SMT solver

6

Inside an SMT solver

SMT formula

SMT solver

SAT solver

6

SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

• for cryptography

• for teaching

• for parallel computation

• for cloud computation

• for incremental computation

Interface standardization efforts:

• IPASIR, well-established

• IPASIR-UP, new, designed for SMT

• IPASIR-2, to come, independent from IPASIR-UP but synergies

7

SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

• for cryptography

• for teaching

• for parallel computation

• for cloud computation

• for incremental computation

Interface standardization efforts:

• IPASIR, well-established

• IPASIR-UP, new, designed for SMT

• IPASIR-2, to come, independent from IPASIR-UP but synergies

7

SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

• for cryptography

• for teaching

• for parallel computation

• for cloud computation

• for incremental computation

Interface standardization efforts:

• IPASIR, well-established

• IPASIR-UP, new, designed for SMT

• IPASIR-2, to come, independent from IPASIR-UP but synergies

7

SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

• for cryptography

• for teaching

• for parallel computation

• for cloud computation

• for incremental computation

Interface standardization efforts:

• IPASIR, well-established

• IPASIR-UP, new, designed for SMT

• IPASIR-2, to come, independent from IPASIR-UP but synergies

7

SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

• for cryptography

• for teaching

• for parallel computation

• for cloud computation

• for incremental computation

Interface standardization efforts:

• IPASIR, well-established

• IPASIR-UP, new, designed for SMT

• IPASIR-2, to come, independent from IPASIR-UP but synergies

7

SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

• for cryptography

• for teaching

• for parallel computation

• for cloud computation

• for incremental computation

Interface standardization efforts:

• IPASIR, well-established

• IPASIR-UP, new, designed for SMT

• IPASIR-2, to come, independent from IPASIR-UP but synergies

7

SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

• for cryptography

• for teaching

• for parallel computation

• for cloud computation

• for incremental computation

Interface standardization efforts:

• IPASIR, well-established

• IPASIR-UP, new, designed for SMT

• IPASIR-2, to come, independent from IPASIR-UP but synergies

7

SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

• for cryptography

• for teaching

• for parallel computation

• for cloud computation

• for incremental computation

Interface standardization efforts:

• IPASIR, well-established

• IPASIR-UP, new, designed for SMT

• IPASIR-2, to come, independent from IPASIR-UP but synergies

7

SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

• for cryptography

• for teaching

• for parallel computation

• for cloud computation

• for incremental computation

Interface standardization efforts:

• IPASIR, well-established

• IPASIR-UP, new, designed for SMT

• IPASIR-2, to come, independent from IPASIR-UP but synergies

7

SAT Solving for SMT

An SMT formula, e.g., our running example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
cannot be handled by a SAT solver.

It must be abstracted, e.g.,

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]

If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

P ∧ Q ∧ R ∧ ¬S

8

SAT Solving for SMT

An SMT formula, e.g., our running example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
cannot be handled by a SAT solver. It must be abstracted, e.g.,

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]

If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

P ∧ Q ∧ R ∧ ¬S

8

SAT Solving for SMT

An SMT formula, e.g., our running example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
cannot be handled by a SAT solver. It must be abstracted, e.g.,

P ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]

If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

P ∧ Q ∧ R ∧ ¬S

8

SAT Solving for SMT

An SMT formula, e.g., our running example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
cannot be handled by a SAT solver. It must be abstracted, e.g.,

P ∧ Q ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]

If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

P ∧ Q ∧ R ∧ ¬S

8

SAT Solving for SMT

An SMT formula, e.g., our running example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
cannot be handled by a SAT solver. It must be abstracted, e.g.,

P ∧ Q ∧ R ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]

If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

P ∧ Q ∧ R ∧ ¬S

8

SAT Solving for SMT

An SMT formula, e.g., our running example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
cannot be handled by a SAT solver. It must be abstracted, e.g.,

P ∧ Q ∧ R ∧
[
¬S ∨ (q(a) ∧ ¬q(f (b) + c))

]

If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

P ∧ Q ∧ R ∧ ¬S

8

SAT Solving for SMT

An SMT formula, e.g., our running example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
cannot be handled by a SAT solver. It must be abstracted, e.g.,

P ∧ Q ∧ R ∧
[
¬S ∨ (T ∧ ¬q(f (b) + c))

]

If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

P ∧ Q ∧ R ∧ ¬S

8

SAT Solving for SMT

An SMT formula, e.g., our running example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
cannot be handled by a SAT solver. It must be abstracted, e.g.,

P ∧ Q ∧ R ∧
[
¬S ∨ (T ∧ ¬U)

]

If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

P ∧ Q ∧ R ∧ ¬S

8

SAT Solving for SMT

An SMT formula, e.g., our running example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
cannot be handled by a SAT solver. It must be abstracted, e.g.,

P ∧ Q ∧ R ∧
[
¬S ∨ (T ∧ ¬U)

]
If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

P ∧ Q ∧ R ∧ ¬S

8

SAT Solving for SMT

An SMT formula, e.g., our running example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
cannot be handled by a SAT solver. It must be abstracted, e.g.,

P ∧ Q ∧ R ∧
[
¬S ∨ (T ∧ ¬U)

]
If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

P ∧ Q ∧ R ∧ ¬S

8

Inside an SMT solver

SMT formula

SMT solver

SAT solver

9

Inside an SMT solver

SMT formula

SMT solver

SAT solver

Boolean Model

9

Inside an SMT solver

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

9

First-order Theories

The most useful theories for verification include:

Equality:

Equality with uninterpreted symbols (EUF) congruence closure f (x) = y , g(a, b) = a

Math:
linear arithmetic (real, integers) (LIA, LRA) mostly simplex x + 3y = 22

non-linear arithmetic CAD, Gröbner bases... 3x2 + 2x − 8 = 0

Data structures:
arrays uninterpreted symbols read(a,i) = b

bitvectors bit-blasting concat bvi bvj = bvm

strings SAT + arithmetic “a” · “bc” = “ab” · “c”

10

First-order Theories

The most useful theories for verification include:

Equality:

Equality with uninterpreted symbols (EUF) congruence closure f (x) = y , g(a, b) = a

Math:
linear arithmetic (real, integers) (LIA, LRA) mostly simplex x + 3y = 22

non-linear arithmetic CAD, Gröbner bases... 3x2 + 2x − 8 = 0

Data structures:
arrays uninterpreted symbols read(a,i) = b

bitvectors bit-blasting concat bvi bvj = bvm

strings SAT + arithmetic “a” · “bc” = “ab” · “c”

10

First-order Theories

The most useful theories for verification include:

Equality:

Equality with uninterpreted symbols (EUF) congruence closure f (x) = y , g(a, b) = a

Math:
linear arithmetic (real, integers) (LIA, LRA) mostly simplex x + 3y = 22

non-linear arithmetic CAD, Gröbner bases... 3x2 + 2x − 8 = 0

Data structures:
arrays uninterpreted symbols read(a,i) = b

bitvectors bit-blasting concat bvi bvj = bvm

strings SAT + arithmetic “a” · “bc” = “ab” · “c”

10

Theories for SMT

Theory solvers detect problematic assignments done by the SAT solver, e.g.,

if the SAT solver found the model

P ∧ Q ∧ R ∧ ¬S

for our running example, it means

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ a 6= b.

Then an LIA solver finds that both a = b and a 6= b must hold and returns false.

The formula ¬P ∨ ¬Q ∨ ¬R ∨ S is added to the abstracted formula before calling the

SAT solver once more.

11

Theories for SMT

Theory solvers detect problematic assignments done by the SAT solver, e.g.,

if the SAT solver found the model

P ∧ Q ∧ R ∧ ¬S

for our running example, it means

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ a 6= b.

Then an LIA solver finds that both a = b and a 6= b must hold and returns false.

The formula ¬P ∨ ¬Q ∨ ¬R ∨ S is added to the abstracted formula before calling the

SAT solver once more.

11

Theories for SMT

Theory solvers detect problematic assignments done by the SAT solver, e.g.,

if the SAT solver found the model

P ∧ Q ∧ R ∧ ¬S

for our running example, it means

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ a 6= b.

Then an LIA solver finds that both a = b and a 6= b must hold and returns false.

The formula ¬P ∨ ¬Q ∨ ¬R ∨ S is added to the abstracted formula before calling the

SAT solver once more.

11

Theories for SMT

Theory solvers detect problematic assignments done by the SAT solver, e.g.,

if the SAT solver found the model

P ∧ Q ∧ R ∧ ¬S

for our running example, it means

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ a 6= b.

Then an LIA solver finds that both a = b and a 6= b must hold and returns false.

The formula ¬P ∨ ¬Q ∨ ¬R ∨ S is added to the abstracted formula before calling the

SAT solver once more.

11

Inside an SMT solver

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

12

Inside an SMT solver

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

12

Inside an SMT solver

12

Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0

=⇒ b ≤ a =⇒ a = b

• EUF: f (a) 6= f (b)

, a = b =⇒ a 6= b =⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

13

Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0

=⇒ b ≤ a =⇒ a = b

• EUF: f (a) 6= f (b)

, a = b =⇒ a 6= b =⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

13

Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0

=⇒ b ≤ a =⇒ a = b

• EUF: f (a) 6= f (b)

, a = b =⇒ a 6= b =⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

13

Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0

=⇒ b ≤ a =⇒ a = b

• EUF: f (a) 6= f (b)

, a = b =⇒ a 6= b =⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

13

Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0 =⇒ b ≤ a

=⇒ a = b

• EUF: f (a) 6= f (b)

, a = b =⇒ a 6= b =⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

13

Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0 =⇒ b ≤ a =⇒ a = b

• EUF: f (a) 6= f (b)

, a = b =⇒ a 6= b =⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

13

Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0 =⇒ b ≤ a =⇒ a = b

• EUF: f (a) 6= f (b)

, a = b =⇒ a 6= b =⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

13

Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0 =⇒ b ≤ a =⇒ a = b

• EUF: f (a) 6= f (b), a = b

=⇒ a 6= b =⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

13

Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0 =⇒ b ≤ a =⇒ a = b

• EUF: f (a) 6= f (b), a = b =⇒ a 6= b

=⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

13

Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0 =⇒ b ≤ a =⇒ a = b

• EUF: f (a) 6= f (b), a = b =⇒ a 6= b =⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

13

Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0 =⇒ b ≤ a =⇒ a = b

• EUF: f (a) 6= f (b), a = b =⇒ a 6= b =⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

13

Inside an SMT solver

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

14

Inside an SMT solver

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

14

Quantified Formulas in SMT (1/3)

Let us add to our improved running example,

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
f (a) 6= f (b) ∨ (q(a) ∧ ¬q(f (b) + c))

]
the quantified formula

∀x , y . (q(y) =⇒ q(g(y) + x))

First the ground SMT solver will be queried for a model

15

Quantified Formulas in SMT (1/3)

Let us add to our improved running example,

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
f (a) 6= f (b) ∨ (q(a) ∧ ¬q(f (b) + c))

]
the quantified formula

∀x , y . (q(y) =⇒ q(g(y) + x))

First the ground SMT solver will be queried for a model

15

Inside an SMT solver

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

16

Quantified Formulas in SMT (2/3)

If our running example,

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
f (a) 6= f (b) ∨ (q(a) ∧ ¬q(f (b) + c))

]
also includes the formula

∀x , y . (q(y) =⇒ q(g(y) + x))

First the ground SMT solver will be queried for a model

, here

a ≤ b, b ≤ a + c , c = 0, q(a),¬q(f (b) + c)

Then instances of the non-ground formulas will be produced based on this model and

fed to the ground SMT solver.

17

Quantified Formulas in SMT (2/3)

If our running example,

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
f (a) 6= f (b) ∨ (q(a) ∧ ¬q(f (b) + c))

]
also includes the formula

∀x , y . (q(y) =⇒ q(g(y) + x))

First the ground SMT solver will be queried for a model, here

a ≤ b, b ≤ a + c , c = 0, q(a),¬q(f (b) + c)

Then instances of the non-ground formulas will be produced based on this model and

fed to the ground SMT solver.

17

Quantified Formulas in SMT (2/3)

If our running example,

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
f (a) 6= f (b) ∨ (q(a) ∧ ¬q(f (b) + c))

]
also includes the formula

∀x , y . (q(y) =⇒ q(g(y) + x))

First the ground SMT solver will be queried for a model, here

a ≤ b, b ≤ a + c , c = 0, q(a),¬q(f (b) + c)

Then instances of the non-ground formulas will be produced based on this model and

fed to the ground SMT solver.

17

Inside an SMT solver

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

18

Quantified Formulas in SMT (3/3)

for a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
f (a) 6= f (b) ∨ (q(a) ∧ ¬q(f (b) + c))

]
∀x , y . (q(y) =⇒ q(f (y) + x))

given the model a ≤ b, b ≤ a + c , c = 0, q(a),¬q(g(b) + c)

The instance where y 7→ a and x 7→ f (b)− g(a), i.e.,

q(a) =⇒ q(g(a) + f (b)− g(a))

leads to a contradiction at the ground level!

19

Quantified Formulas in SMT (3/3)

for a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
f (a) 6= f (b) ∨ (q(a) ∧ ¬q(f (b) + c))

]
∀x , y . (q(y) =⇒ q(f (y) + x))

given the model a ≤ b, b ≤ a + c , c = 0, q(a),¬q(g(b) + c)

The instance where y 7→ a and x 7→ f (b)− g(a), i.e.,

q(a) =⇒ q(g(a) + f (b)− g(a))

leads to a contradiction at the ground level!

19

Quantified Formulas in SMT (3/3)

for a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
f (a) 6= f (b) ∨ (q(a) ∧ ¬q(f (b) + c))

]
∀x , y . (q(y) =⇒ q(f (y) + x))

given the model a ≤ b, b ≤ a + c , c = 0, q(a),¬q(g(b) + c)

The instance where y 7→ a and x 7→ f (b)− g(a), i.e.,

q(a) =⇒ q(g(a) + f (b)− g(a))

leads to a contradiction at the ground level!

19

Instantiation Techniques

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based also heuristic, to find unsat, very efficient when it works

• model-based complete for decidable fragments, to find sat

• enumerative complete for finitely populated types

20

Instantiation Techniques

There is no panacea!

Instantiation techniques:

• trigger-based

heuristic, to find unsat

• conflict-based also heuristic, to find unsat, very efficient when it works

• model-based complete for decidable fragments, to find sat

• enumerative complete for finitely populated types

20

Instantiation Techniques

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based also heuristic, to find unsat, very efficient when it works

• model-based complete for decidable fragments, to find sat

• enumerative complete for finitely populated types

20

Instantiation Techniques

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based

also heuristic, to find unsat, very efficient when it works

• model-based complete for decidable fragments, to find sat

• enumerative complete for finitely populated types

20

Instantiation Techniques

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based also heuristic, to find unsat

, very efficient when it works

• model-based complete for decidable fragments, to find sat

• enumerative complete for finitely populated types

20

Instantiation Techniques

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based also heuristic, to find unsat, very efficient when it works

• model-based complete for decidable fragments, to find sat

• enumerative complete for finitely populated types

20

Instantiation Techniques

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based also heuristic, to find unsat, very efficient when it works

• model-based

complete for decidable fragments, to find sat

• enumerative complete for finitely populated types

20

Instantiation Techniques

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based also heuristic, to find unsat, very efficient when it works

• model-based complete for decidable fragments, to find sat

• enumerative complete for finitely populated types

20

Instantiation Techniques

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based also heuristic, to find unsat, very efficient when it works

• model-based complete for decidable fragments, to find sat

• enumerative

complete for finitely populated types

20

Instantiation Techniques

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based also heuristic, to find unsat, very efficient when it works

• model-based complete for decidable fragments, to find sat

• enumerative complete for finitely populated types

20

Inside an SMT solver

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)
21

SMT Solving in Higher-Order Logic

Higher-Order Logic (HOL)

• functional variables y a = g a b

• partially applied functions g a = f

• lambda terms λy . y a

• Booleans as terms λxy .P y ∨ x

22

Higher-Order Logic (HOL)

• functional variables y a = g a b

• partially applied functions g a = f

• lambda terms λy . y a

• Booleans as terms λxy .P y ∨ x

22

Higher-Order Logic (HOL)

• functional variables y a = g a b

• partially applied functions g a = f

• lambda terms λy . y a

• Booleans as terms λxy .P y ∨ x

22

Higher-Order Logic (HOL)

• functional variables y a = g a b

• partially applied functions g a = f

• lambda terms λy . y a

• Booleans as terms λxy .P y ∨ x

22

SMT for HOL

Higher-Order Logic is closer than First-Order Logic to:

• native language of proof assistants,

• theories like sets, streams, fixpoints, etc,

• functional code.

HOL encoded in first-order logic ≡ structure loss u performance loss

To work in HOL, both Input language and solver must be adapted!

23

SMT for HOL

Higher-Order Logic is closer than First-Order Logic to:

• native language of proof assistants,

• theories like sets, streams, fixpoints, etc,

• functional code.

HOL encoded in first-order logic ≡ structure loss u performance loss

To work in HOL, both Input language and solver must be adapted!

23

SMT for HOL

Higher-Order Logic is closer than First-Order Logic to:

• native language of proof assistants,

• theories like sets, streams, fixpoints, etc,

• functional code.

HOL encoded in first-order logic ≡ structure loss u performance loss

To work in HOL, both Input language and solver must be adapted!

23

SMT for HOL

Higher-Order Logic is closer than First-Order Logic to:

• native language of proof assistants,

• theories like sets, streams, fixpoints, etc,

• functional code.

HOL encoded in first-order logic ≡ structure loss u performance loss

To work in HOL, both Input language and solver must be adapted!

23

SMT for HOL

Higher-Order Logic is closer than First-Order Logic to:

• native language of proof assistants,

• theories like sets, streams, fixpoints, etc,

• functional code.

HOL encoded in first-order logic

≡ structure loss u performance loss

To work in HOL, both Input language and solver must be adapted!

23

SMT for HOL

Higher-Order Logic is closer than First-Order Logic to:

• native language of proof assistants,

• theories like sets, streams, fixpoints, etc,

• functional code.

HOL encoded in first-order logic ≡ structure loss

u performance loss

To work in HOL, both Input language and solver must be adapted!

23

SMT for HOL

Higher-Order Logic is closer than First-Order Logic to:

• native language of proof assistants,

• theories like sets, streams, fixpoints, etc,

• functional code.

HOL encoded in first-order logic ≡ structure loss u performance loss

To work in HOL, both Input language and solver must be adapted!

23

SMT for HOL

Higher-Order Logic is closer than First-Order Logic to:

• native language of proof assistants,

• theories like sets, streams, fixpoints, etc,

• functional code.

HOL encoded in first-order logic ≡ structure loss u performance loss

To work in HOL, both Input language and solver must be adapted!

23

SMTlib for HOL

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

• dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6)

with a minor setting change:

(set-logic QF UFLRA)

(declare-const a Int)

(declare-fun g Int Int)

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)

24

SMTlib for HOL

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

• dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6)

with a minor setting change:

(set-logic QF UFLRA)

(declare-const a Int)

(declare-fun g Int Int)

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)

24

SMTlib for HOL

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

• dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6)

with a minor setting change:

(set-logic QF UFLRA)

(declare-const a Int)

(declare-fun g Int Int)

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)

24

SMTlib for HOL

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

• dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6)

with a minor setting change:

(set-logic QF UFLRA)

(declare-const a Int)

(declare-fun g Int Int)

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)

24

SMTlib for HOL

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

• dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6) with a minor setting change:

(set-logic QF UFLRA)

(declare-const a Int)

(declare-fun g Int Int)

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)

24

SMTlib for HOL

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

• dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6) with a minor setting change:

(set-logic HO QF UFLRA)

(declare-const a Int)

(declare-fun g Int Int)

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)

24

SMTlib for HOL

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

• dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6) with a minor setting change:

(set-logic HO ALL)

(declare-const a Int)

(declare-fun g Int Int)

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)

24

SMTlib for HOL

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

• dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6) with a minor setting change:

(set-logic HO ALL)

(declare-const a Int)

(declare-const g (-> Int Int))

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)

24

SMTlib for HOL

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

• dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6) with a minor setting change:

(set-logic HO ALL)

(declare-const a Int)

(declare-const g (-> Int Int))

(declare-fun f (Int Int) Int)

(assert (= g (f a)))

(check-sat)

24

SMTlib for HOL

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

• dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6) with a minor setting change:

(set-logic HO ALL)

(declare-const a Int)

(declare-const g (-> Int Int))

(declare-fun f (Int Int) Int)

(assert (= g (lambda ((x Int)) (f x a))))

(check-sat)

24

HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light)

FOL to HOL

datastructures lifting (heavy)

cvc4/cvc5 (heavy)

HOL to FOL

encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦ � � ×

25

HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light)

FOL to HOL datastructures lifting (heavy)

cvc4/cvc5 (heavy)

HOL to FOL

encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦ � � ×

25

HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light)

FOL to HOL datastructures lifting (heavy)

cvc4/cvc5 (heavy)

HOL to FOL encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦ � � ×

25

HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light) FOL to HOL datastructures lifting (heavy)

cvc4/cvc5 (heavy)

HOL to FOL encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦ � � ×

25

HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light) FOL to HOL datastructures lifting (heavy)

cvc4/cvc5 (heavy) HOL to FOL encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦ � � ×

25

HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light) FOL to HOL datastructures lifting (heavy)

cvc4/cvc5 (heavy) HOL to FOL encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦ � � ×

25

HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light) FOL to HOL datastructures lifting (heavy)

cvc4/cvc5 (heavy) HOL to FOL encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦ � � ×

25

HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light) FOL to HOL datastructures lifting (heavy)

cvc4/cvc5 (heavy) HOL to FOL encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦

� � ×

25

HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light) FOL to HOL datastructures lifting (heavy)

cvc4/cvc5 (heavy) HOL to FOL encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦

� �

×

25

HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light) FOL to HOL datastructures lifting (heavy)

cvc4/cvc5 (heavy) HOL to FOL encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦

�

� ×

25

HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light) FOL to HOL datastructures lifting (heavy)

cvc4/cvc5 (heavy) HOL to FOL encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦ � � ×

25

Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!

26

Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!

26

Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!

26

Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!

26

Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!

26

Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!

26

Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!

26

Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!

26

Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!

26

Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!

26

Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!

26

A Modular SMT Solver for Higher-Order

No good research vessel:

• veriT: light but code rot

• cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

Principles:

• Never sacrifice modularity for efficiency, to help research.

• Gracefully lift first-order SMT to higher-order.

• Stay low level (C++) for efficiency and compatibility with other solvers (Z3, cvc5,

bitwuzla, SPASS-SAT...)

27

A Modular SMT Solver for Higher-Order

No good research vessel:

• veriT: light but code rot

• cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

Principles:

• Never sacrifice modularity for efficiency, to help research.

• Gracefully lift first-order SMT to higher-order.

• Stay low level (C++) for efficiency and compatibility with other solvers (Z3, cvc5,

bitwuzla, SPASS-SAT...)

27

A Modular SMT Solver for Higher-Order

No good research vessel:

• veriT: light but code rot

• cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

Principles:

• Never sacrifice modularity for efficiency, to help research.

• Gracefully lift first-order SMT to higher-order.

• Stay low level (C++) for efficiency and compatibility with other solvers (Z3, cvc5,

bitwuzla, SPASS-SAT...)

27

A Modular SMT Solver for Higher-Order

No good research vessel:

• veriT: light but code rot

• cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

Principles:

• Never sacrifice modularity for efficiency, to help research.

• Gracefully lift first-order SMT to higher-order.

• Stay low level (C++) for efficiency and compatibility with other solvers (Z3, cvc5,

bitwuzla, SPASS-SAT...)

27

A Modular SMT Solver for Higher-Order

No good research vessel:

• veriT: light but code rot

• cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

Principles:

• Never sacrifice modularity for efficiency, to help research.

• Gracefully lift first-order SMT to higher-order.

• Stay low level (C++) for efficiency and compatibility with other solvers (Z3, cvc5,

bitwuzla, SPASS-SAT...)

27

A Modular SMT Solver for Higher-Order

No good research vessel:

• veriT: light but code rot

• cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

Principles:

• Never sacrifice modularity for efficiency, to help research.

• Gracefully lift first-order SMT to higher-order.

• Stay low level (C++) for efficiency and compatibility with other solvers (Z3, cvc5,

bitwuzla, SPASS-SAT...)

27

A Modular SMT Solver for Higher-Order

No good research vessel:

• veriT: light but code rot

• cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

Principles:

• Never sacrifice modularity for efficiency, to help research.

• Gracefully lift first-order SMT to higher-order.

• Stay low level (C++) for efficiency and compatibility with other solvers (Z3, cvc5,

bitwuzla, SPASS-SAT...)

27

To Conclude

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

• be patient for mature tools, or...

• try other higher-order tools (if you don’t need arithmetic),

e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly

• if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!

28

To Conclude

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

• be patient for mature tools, or...

• try other higher-order tools

(if you don’t need arithmetic),

e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly

• if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!

28

To Conclude

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

• be patient for mature tools, or...

• try other higher-order tools

(if you don’t need arithmetic),

e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly

• if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!

28

To Conclude

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

• be patient for mature tools, or...

• try other higher-order tools

(if you don’t need arithmetic),

e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly

• if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!

28

To Conclude

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

• be patient for mature tools, or...

• try other higher-order tools

(if you don’t need arithmetic),

e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly

• if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!

28

To Conclude

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

• be patient for mature tools, or...

• try other higher-order tools (if you don’t need arithmetic),

e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly

• if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!

28

To Conclude

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

• be patient for mature tools, or...

• try other higher-order tools (if you don’t need arithmetic),

e.g., Zipperposition, E, Vampire, Leo III, Lash...

and most importantly

• if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!

28

To Conclude

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

• be patient for mature tools, or...

• try other higher-order tools (if you don’t need arithmetic),

e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly

• if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!

28

To Conclude

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

• be patient for mature tools, or...

• try other higher-order tools (if you don’t need arithmetic),

e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly

• if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!

28

To Conclude

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

• be patient for mature tools, or...

• try other higher-order tools (if you don’t need arithmetic),

e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly

• if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!

28

	Standard SMT Solving
	SMT Solving in Higher-Order Logic
	Language
	Tool(s)
	Work in Progress

