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SMT in Formal Methods

Z3, Alt-Ergo, cvc5, ...

SMT is Well-known as a backend for many techniques, including:

• program verification (Boogie, F∗, Viper, Why3, Frama-C, Atelier-B...)

• symbolic execution (KLEE, S2E, Triton)

• interactive proof assistants (Isabelle/HOL, Coq, HOL)
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Standard SMT Solving



The Bases (1/2)

SMT stands for Satisfiability Modulo Theories

An SMT solver determins the truth value of a formula.

A formula is . . .

valid when always true,

satisfiable when true at least once,

unsatisfiable when never true.
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The Bases (2/2)

SMT solvers usually operate in first-order logic

• formula φ, ψ: built from ¬,∧,∨,⇒,⇔, . . . and quantifiers

• quantifiers ∀,∃: ∀x .φ, ∃y .ψ
• bound variables: ∀x , y .P(f (x), y) ∨ Q(y)

+ interpreted symbols in given theories

• +, ×, ≤, =, . . .

Example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
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Inside an SMT solver

SMT formula

SMT solver
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SMT Inputs

Returning to our example:

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]

encoded in SMT-LIB 2.0 format:

(set-logic QF UFLIA)

(set-info :source | Example formula in SMT-LIB 2.6 |)

(set-info :smt-lib-version 2.6)

(declare-fun f (Int) Int)

(declare-fun q (Int) Bool)

(declare-fun a () Int)

(declare-fun b () Int)

(declare-fun c () Int)

(assert (and (<= a b) (<= b (+ a c)) (= c 0)

(or (not (= a b))

(and (q a) (not (q (+ (f b) c)))))))

(check-sat)

(exit)
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SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

• for cryptography

• for teaching

• for parallel computation

• for cloud computation

• for incremental computation

Interface standardization efforts:

• IPASIR, well-established

• IPASIR-UP, new, designed for SMT

• IPASIR-2, to come, independent from IPASIR-UP but synergies
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SAT Solving for SMT

An SMT formula, e.g., our running example

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]
cannot be handled by a SAT solver.

It must be abstracted, e.g.,

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
a 6= b ∨ (q(a) ∧ ¬q(f (b) + c))

]

If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

P ∧ Q ∧ R ∧ ¬S
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First-order Theories

The most useful theories for verification include:

Equality:

Equality with uninterpreted symbols (EUF) congruence closure f (x) = y , g(a, b) = a

Math:
linear arithmetic (real, integers) (LIA, LRA) mostly simplex x + 3y = 22

non-linear arithmetic CAD, Gröbner bases... 3x2 + 2x − 8 = 0

Data structures:
arrays uninterpreted symbols read(a,i) = b

bitvectors bit-blasting concat bvi bvj = bvm

strings SAT + arithmetic “a” · “bc” = “ab” · “c”
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Theories for SMT

Theory solvers detect problematic assignments done by the SAT solver, e.g.,

if the SAT solver found the model

P ∧ Q ∧ R ∧ ¬S

for our running example, it means

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ a 6= b.

Then an LIA solver finds that both a = b and a 6= b must hold and returns false.

The formula ¬P ∨ ¬Q ∨ ¬R ∨ S is added to the abstracted formula before calling the

SAT solver once more.
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Combining Theories

If our example,

P ∧ Q ∧ R ∧ ¬S

means in fact

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧ f (a) 6= f (b).

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

• LIA: a ≤ b, b ≤ a + c , c = 0

=⇒ b ≤ a =⇒ a = b

• EUF: f (a) 6= f (b)

, a = b =⇒ a 6= b =⇒ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .
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Quantified Formulas in SMT (1/3)

Let us add to our improved running example,

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
f (a) 6= f (b) ∨ (q(a) ∧ ¬q(f (b) + c))

]
the quantified formula

∀x , y . (q(y) =⇒ q(g(y) + x))

First the ground SMT solver will be queried for a model
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Quantified Formulas in SMT (2/3)

If our running example,

a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
f (a) 6= f (b) ∨ (q(a) ∧ ¬q(f (b) + c))

]
also includes the formula

∀x , y . (q(y) =⇒ q(g(y) + x))

First the ground SMT solver will be queried for a model

, here

a ≤ b, b ≤ a + c , c = 0, q(a),¬q(f (b) + c)

Then instances of the non-ground formulas will be produced based on this model and

fed to the ground SMT solver.
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Quantified Formulas in SMT (3/3)

for a ≤ b ∧ b ≤ a + c ∧ c = 0 ∧
[
f (a) 6= f (b) ∨ (q(a) ∧ ¬q(f (b) + c))

]
∀x , y . (q(y) =⇒ q(f (y) + x))

given the model a ≤ b, b ≤ a + c , c = 0, q(a),¬q(g(b) + c)

The instance where y 7→ a and x 7→ f (b)− g(a), i.e.,

q(a) =⇒ q(g(a) + f (b)− g(a))

leads to a contradiction at the ground level!
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Instantiation Techniques

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based also heuristic, to find unsat, very efficient when it works

• model-based complete for decidable fragments, to find sat

• enumerative complete for finitely populated types
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SMT Solving in Higher-Order Logic



Higher-Order Logic (HOL)

• functional variables y a = g a b

• partially applied functions g a = f

• lambda terms λy . y a

• Booleans as terms λxy .P y ∨ x

22
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SMT for HOL

Higher-Order Logic is closer than First-Order Logic to:

• native language of proof assistants,

• theories like sets, streams, fixpoints, etc,

• functional code.

HOL encoded in first-order logic ≡ structure loss u performance loss

To work in HOL, both Input language and solver must be adapted!
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SMTlib for HOL

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

• dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6)

with a minor setting change:

(set-logic QF UFLRA)

(declare-const a Int)

(declare-fun g Int Int)

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)
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(check-sat)
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HO-SMT solvers

Two main approaches to HO-SMT:

veriT (light)

FOL to HOL

datastructures lifting (heavy)

cvc4/cvc5 (heavy)

HOL to FOL

encodings (light)

What about instantiation?

trigger-based conflict-based model-based enumerative

◦ � � ×
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Conflict-based Instantiation for HOSMT

• Encode the problem as a propositional constraints.

• Apply SAT solving to find a model.

• If successful, build the instance from the model.

Current status:

◦ theory

� Isabelle/HOL verification

◦ pseudo-code

◦ core implementation (encoding, call to SAT)

× full implementation (preprocessing, integration)

We want a new HOSMT solver first!
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A Modular SMT Solver for Higher-Order

No good research vessel:

• veriT: light but code rot

• cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

Principles:

• Never sacrifice modularity for efficiency, to help research.

• Gracefully lift first-order SMT to higher-order.

• Stay low level (C++) for efficiency and compatibility with other solvers (Z3, cvc5,

bitwuzla, SPASS-SAT...)
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To Conclude

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

• be patient for mature tools, or...

• try other higher-order tools (if you don’t need arithmetic),

e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly

• if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!
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